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Preface

Modern information systems rely increasingly on combining concurrent, dis-
tributed, real-time, reconfigurable, and heterogeneous components. New models,
architectures, languages, and verification techniques are necessary to cope with
the complexity induced by the demands of today’s software development. COOR-
DINATION aims to explore the spectrum of languages, middleware, services, and
algorithms that separate behavior from interaction, therefore increasing modu-
larity, simplifying reasoning, and ultimately enhancing software development.

This volume contains the proceedings of the Ninth International Conference
on Coordination Models and Languages, COORDINATION 2007, held in Pa-
phos, Cyprus in June 2007. For the second time, it was part of the federated
conference DisCoTec. COORDINATION itself is part of a series whose proceed-
ings have been published in LNCS volumes 1061, 1282, 1594, 1906, 2315, 2949,
3454, and 4038. From the 51 submissions received from around the world, the
Program Committee selected 17 papers for presentation and publication in this
volume on the basis of originality, quality, and relevance to the topics of the
conference. Each submission received at least three reviews. As with previous
editions, the paper submission and selection processes were managed entirely
electronically. This was accomplished using EasyChair, a free Web-based con-
ference management system. In addition to the technical paper presentations,
COORDINATION hosted an invited presentation by Rachid Guerraoui from
Ecole Polytechnique Federale de Lausanne.

We are grateful to all the Program Committee members who devoted much
effort and time to read and discuss the papers. Moreover, we acknowledge the
help of additional external reviewers who evaluated submissions in their area of
expertise.

Finally, we would like to thank the authors of all the submitted papers and the
conference attendees, for keeping this research community lively and interactive,
and ultimately ensuring the success of this conference series.

June 2007 Amy L. Murphy
Jan Vitek
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A Coordination Model for Triplespace Computing

Elena Simperl1,2, Reto Krummenacher2, and Lyndon Nixon1

1 Free University of Berlin, Germany
2 DERI, University of Innsbruck, Austria

simperl@inf.fu-berlin.de, reto.krummenacher@deri.org,
nixon@inf.fu-berlin.de

Abstract. Recent advances in middleware technologies propose semantics-
aware tuplespaces as an instrument for coping with the requirements of scal-
ability, heterogeneity and dynamism arising in highly distributed environments
such as the Web or the emerging Semantic Web. In particular, Semantic Web
services have inherited the Web service communication model, which is based
on synchronous message exchange, thus being incompatible with the REST ar-
chitectural model of the Web. Analogously to the conventional Web, truly Web-
compliant service communication should, however, be based on persistent
publication instead of message passing. This paper reconsiders “triplespace com-
puting”, a coordination middleware for the Semantic Web. We look at how a
coordination model for triplespace systems could look like - in order to manage
formal knowledge representations in a space and to support the interaction pat-
terns characteristic for the Semantic Web and Semantic Web services - as a pre-
cursor to the design and implementation of a triplespace platform in the context
of the TripCom project.1

1 Introduction

The Semantic Web will have a significant impact on the next generation of worldwide
network information systems. In order to build semantic applications, some middleware
is necessary to offer uniform access to distributed information. This middleware differs
from similar technologies for Web-based systems in that it incorporates means to cope
with the machine-processable semantics of Web resources. Moreover, Semantic Web
services - a core building block of the Semantic Web - have inherited the Web service
communication model, which is based on synchronous message exchange, thus being
incompatible with the Representational State Transfer (REST) architectural model of
the Web [15]. In order to ensure truly Web-compliant service communication, there is
need for a middleware solution that is based, analogously to the conventional Web, on
persistent information publication instead of message passing, thus allowing services to
exchange information in a time and reference decoupled manner.

In this paper we reconsider “triplespace computing”, a coordination middleware for
the Semantic Web. Triplespace systems are able to manage information formalized us-
ing Semantic Web representation languages and to coordinate information exchange

1 TripCom (IST-4-027324-STP): http://www.tripcom.org

A.L. Murphy and J. Vitek (Eds.): COORDINATION 2007, LNCS 4467, pp. 1–18, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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among agents processing this information. However, this new application scenario im-
poses several revisions of the Linda model. New coordination primitives as well as new
types of tuples and spaces are needed in order to enable tuplespaces to deal not only
with plain data, but also with interpretable information with assigned truth values. Fur-
ther on, the new approach has to provide optimal support for the interaction patterns
characteristic for the communication among Semantic Web services. In this paper we
will use the terms “triplespaces” and “triplespace system” interchangeably to refer to
an implementation of the triplespace computing paradigm.

The rest of this paper is organized as follows: Sections 2 and 3 present the basic prin-
ciples of the Semantic Web and analyze the requirements that need to be satisfied by a
(space-based) middleware in order to enable the realization of Semantic Web applica-
tions. We elaborate on triplespace computing and the underlying coordination model in
Section 4. Section 5 gives an overview of similar initiatives, while Section 6 concludes
with a discussion of open issues and future work.

2 An Introduction to the Semantic Web

The Semantic Web is an extension of the current Web in which information is given
well-defined, machine-processable meaning, better enabling computers and people to
co-operate [2]. It is intended to complement the current World Wide Web with a network
of URI-addressable information, which is represented and linked in such a way that it
can be easily processed by machines both at a syntactical and at a semantical level. For
this purpose Web resources should be annotated with machine-understandable metadata
that is formalized by use of common vocabularies with predefined semantics, known as
“ontologies”. Further on, semantically enriched Web services should be able to process
and exchange this information.

The first step towards the realization of the Semantic Web have been made through
the standardization of representation languages for Web knowledge like RDF [22],

Fig. 1. The Semantic Web stack by Tim Berners-Lee [1]
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RDFS [3] and OWL [26] and the increasing dissemination of ontologies that provide
a common basis for annotations. Additionally, recent efforts in the area of Web ser-
vices propose methods and tools to represent Web services in a Semantic Web compat-
ible manner in order to improve tasks like automatic service discovery or composition
[5,7,14,24].

The Semantic Web is built on XML-based syntaxes which use URIs to uniquely
identify Web resources (cf. Figure 1). Resources can denote not only common Web
documents, but any entity represented within a computer system (e.g. persons, physi-
cal objects, RDF statements) and are described by machine-processable metadata that
provides data about their properties, capabilities, and requirements. Metadata is then a
collection of RDF statements of the type 〈subject, predicate, object〉, where the three
fields can be individually referenced by means of URIs. For exemplification purposes
we annotate the present paper (if available as a Web document) with information con-
cerning its author, content etc. Examples of such RDF statements could be:

The email address of Elena Simperl, one of the authors of this paper, is “simperl@inf.
fu-berlin.de”. This information can be represented in RDF in form of the following two
triples:

〈x:Coordination07Paper, dc:contributor, http://userpage.fu-berlin.de/simperl〉
〈http://userpage.fu-berlin.de/simperl, adr:mail, ”simperl@inf.fu-berlin.de”〉

The subject of the first statement is this paper, identified by an imaginary URI
x:Coordination07Paper. The predicate dc:contributor is part of the Dublin Core (DC)
metadata scheme and denotes a standardized property, while the object http://userpage.
fu-berlin.de/simperl, the value of the property, represents the co-author Elena Simperl.
The object in an RDF statement can be another RDF resource - represented by a URI,
as in the first triple - a literal - represented through a simple XML datatype, as in the
second triple - or a blank node. Further on, the example shows the way individual triples
are naturally interlinked to RDF graphs: the object of the first statement can be used as
subject in subsequent statements.

The contact address of the co-author is “Takustr. 9, 14195 Berlin, Germany”. Struc-
tured information like addresses can be represented in RDF in aggregated form, by
using so-called “blank nodes”, which denote anonymous resources, identified by ap-
plication internal URIs:

〈http://userpage.fu-berlin.de/simperl, adr:contact, :bn1〉
〈 :bn1, adr:street, ”Takustr.”〉
〈 :bn1, adr:number, ”9”〉
〈 :bn1, adr:zip, ”14195”〉
〈 :bn1, adr:city, ”Berlin”〉

Here :bn1 identifies an anonymous resource which aggregates the address-related
data, i.e. there is some entity that is characterized by an adr:street, an adr:number, etc.

RDF is considered to be the standard interchange format of the Semantic Web and
is intended to be used as a simple yet powerful annotation language for Web resources.
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The next layers on Figure 1 add logically more expressive languages for ontologies
(e.g. OWL) and support for rules (e.g. SWRL [19]). RDFS and OWL are used to define
common vocabularies for metadata which enable interoperability among applications.
Besides, they re-define Web resources in terms of classes and properties with a well-
founded semantics which can be exploited by reasoners to validate the models and to
automatically generate implicit knowledge. We demonstrate the usage of ontologies
and ontology representation languages by extending the previous examples with addi-
tional information formalized in RDFS and OWL. In that way we align the local terms
to external vocabularies. This provides a more precise specification of the underlying
domain, thus forming the basis for more powerful information retrieval in a fictive pub-
lication repository.

This paper is a special kind of publication. Specialization and generalization hierar-
chies can be built in RDFS and OWL. A Paper is a special type of Publication:

〈x:Paper, rdfs:subClassOf, x:Publication〉

Further on, one can link ontological information to concrete instance data; the
statement

〈x:Coordination07Paper, rdf:type, x:Paper〉

specifies that the current document is a particular instance of the class Paper in our
imaginary publications ontology. In this way a query looking for publications of a given
author would match not only to the documents which are explicitly defined (through
annotations) as publications, but also to specific publication types such as conference
papers or journal articles.

The concept Publication in the local ontology with the namespace ’x’ is equivalent to
the concept Text in the Dublin Core vocabulary. Equivalence relationships between
entities can be expressed in OWL:

〈x:Publication, owl:sameClassAs, dc:Text〉

Aligning the personal ontology to a standard model such as Dublin Core is the first
step towards increased syntactic and semantic interoperability. Ensuring syntactic com-
patibility enables more flexible retrieval services, which are then able to go beyond
simple string matching. The semantic interoperability allows applications handling the
local ontology to better understand the meaning of the corresponding concept, since
the equivalence between concepts implies also an inheritance relationship by means
of which the local concept is enriched with the properties externally defined for its
equivalent.

A paper consists of several sections. The domain model is further refined in order to
define typical (physical or conceptual) parts of a scientific paper. As in the previous
example, extending the model supplies machines with deeper background knowledge
on the application domain, thus enabling advanced, domain-tailored behavior. From a
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modeling point of view we introduce a new property partOf which relates entities to
their parts:

〈x:Section x:partOf x:Paper〉

In addition to specifying their domain and range, one can refine the semantics of the
domain properties by specifying features such as transitivity, symmetry or cardinality
constraints.

The remaining layers of the Semantic Web are still at a much more immature stage.
However, issues of proof and trust are vital to the success of the Semantic Web since
one needs techniques to verify the quality of the created metadata. The proof layer
(cf. Figure 1) is intended to provide languages and tools to prove whether statements
created by arbitrary authors are true or not. The trust layer addresses the same issue
from a different perspective. It should define mechanisms which, in correlation with
digital signatures, enable the definition of provenance and reputation information for
resource metadata.

3 Requirements for a Semantics-Aware Middleware

With the growing importance of open distributed systems, in particular the World Wide
Web, new requirements arose from the way services communicate and coordinate their
access to shared information. The coordination between clients in such open environ-
ment is more complex as a system cannot know in advance which clients will use it, nor
which characteristics the active clients might have. For example, clients may not neces-
sarily agree in advance on shared models, protocols and types for the data exchanged.
It may become the task of the middleware to (partially) resolve such heterogeneities.
For open distributed systems these twin issues of dynamism and heterogeneity need to
be taken into account and are furthermore tightly related to the problem of scalability.
One answer to these issues is the application of semantic technologies to enhance the
descriptions of clients, services, protocols and data for example in form of the afore-
mentioned Semantic Web services.

The advantage of adding semantics to service, protocol and data descriptions is that
the interfaces to the different agents, services and information sources can be dynami-
cally generated, while the semantics of the exchanged information is formally defined.
Consequently there are new means for the automatization of service and data discovery,
mediation and service composition. This suggests that (Semantic) Web services pro-
vide a good communication model for distributed computing scenarios, as envisioned
by service-oriented architectures [10]. However, Semantic Web service infrastructures
do not provide support for persistent publication of data, nor for time decoupling of
messages so that data can outlive the services publishing or consuming it [11].

These features however are the characteristic of Linda-based systems [17]. Yet, ap-
plying tuplespaces to the open global environment of the (Semantic) Web raises new
requirements [11,20]:

– a reference mechanism. The Web uses URLs as a global mechanism to uniquely
address resources. This offers means to address particular spaces or tuples inde-
pendently of their tuple fields and field data.
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– a separation mechanism. Distributed applications which have independent naming
schemes may use the same names for their resources. On the Web, vocabularies can
be kept separate - even when using the same terms - by help of a namespaces mech-
anism. The concept of namespaces should be handed down to tuplespace systems
as well in order to inherit the Web functionality.

– the nesting of tuples. Web data models such as XML and RDF permit the nesting
of elements within a single document, i.e. RDF data adds to RDF Graphs. Likewise
tuples should be able to explicitly show how information units are interlinked.

This gives evidence that the coordination model of Linda needs to be rethought and
extended in order to meet the requirements of Web-scale systems. A coordination model
for the Semantic Web and Semantic Web services must be able

– to support autonomous activity of participants by decoupling interactions in time
and reference - two agents are neither required to be available concurrently, nor
must they know each others location or address,

– to process semantic information as the data being coordinated, and
– to provide access to large amounts of heterogeneous data that is dispersed over

broad and dynamic networks.

In spite of these complex requirements it is clear that combining Linda models and
semantic technologies introduces a new and powerful communication paradigm that
provides the desired grounds for persistent, asynchronous and anonymous dissemina-
tion of machine-understandable information. This communication paradigm has been
referred to as “triplespace computing” [11]. The target application scenarios for this
novel middleware approach range from sharing information on the Semantic Web, dis-
tributed knowledge management and pervasive computing to a fully fledged communi-
cation and coordination platform for Semantic Web services or the Semantic Grid [32].
There, the potential application areas are just as diverse: Enterprise Application Inte-
gration (EAI), eHealth, digital multimedia systems and recommender systems, to only
mention a few.

3.1 Required Extensions to Linda or Why Linda Is Not Enough

In order to comply the requirements of large scale Semantic Web applications Linda
must be extended in several directions. We distinguish two categories of extensions to
the original approach: (1) new types of tuplespaces, and (2) new types of tuples.

The former category aims at overcoming the technical problems of large scale dis-
tributed systems (e.g. heterogeneity, scalability, fault-tolerance, multiuser access) by
proposing distribution strategies for multiple spaces or hierarchic spaces and augmented
naming approaches. Such approaches were already considered in various non-semantic
tuplespace implementations [6,9,27,30,34], as it was recognized that the traditional
Linda approach does not suffice in the large. The second research direction looks at
the necessary extension to tuples and tuple fields. The Semantic Web is mainly about
the meaning of Web resources and their properties. The first problem with traditional
Linda implementations is that tuples with the same number of field and the same field
typing cannot be distinguished, which does not comply with the Semantic Web princi-
ple which foresees that all information is encoded in triples of URIs. Moreover, as we
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have seen in Section 2, the different semantic tuples in a space are not independent as
in Linda, but highly correlated and depending on each other. Hence, the Semantic Web
requires a reconsideration of the tuple model and the way tuples are matched in accor-
dance to these concepts. The matching algorithms have to consider the meaning of the
semantic tuples in order to provide the required degree of knowledge interpretation, and
allow the retrieval of tuples taking into account the relationship to other tuples in the
same space. This highly relates to the already discussed issues of resource identifica-
tion – reference mechanism, namespace mechanism – which must be supported by the
space in order to allow semantic data to be represented according to the specification of
RDF.

Several research projects have already arisen that work on the specification and
implementation of such extensions. We provide a short description of these projects
in Section 5, but first we elaborate on the TripCom approach to semantics-aware
tuplespaces.

4 Triplespace Computing in TripCom

The core vision of triplespace computing is to establish the Web paradigm of “persis-
tently publish and read” for the Semantic Web and Semantic Web services. Currently
these ideas are further conceptualized and implemented within the EU project Trip-
Com. This section describes the basic concepts of this approach, as a precursor for the
design and implementation of a TripCom triplespace system. First, it is necessary to
revisit the definition of tuples and spaces, as it is indispensable to adapt these concepts
to the norms of the Semantic Web. Thereafter we concentrate on the description of the
required coordination primitives in order to make the Linda operations compatible to
the requirements of the Semantic Web and Semantic Web services.

4.1 New Types of Tuples and Tuplespaces

Following the Linda paradigm a triplespace system should be able to represent se-
mantic information through tuples. The expressivity of the information representation
should be aligned to the expressivity of common Semantic Web languages, while re-
specting their semantics, so that tuples could be mapped to and from external Semantic
Web resources. Regarding Semantic Web languages, we currently focus on RDF. RDF
statements can be represented in a three fielded tuple (so-called “triples”) of the form
〈subject, predicate, object〉. Following the RDF abstract syntax each tuple field contains
an URI (or, in the case of the object also a literal). Tuples can be addressed by means of
URIs too, which are defined through the triplespace ontology (cf. Section 4.3). In this
way tuples sharing the same subject, predicate and object can be addressed separately,
which is consistent with the Linda model. If a tuple is removed from and reinserted into
the space, it is allocated with a new URI, as the reinserted tuple is regarded as a new tu-
ple despite its relatedness with the one previously deleted. When performing reasoning
however, tuples sharing the same content are interpreted as duplicates despite different
identifiers, as foreseen by the RDF semantics [18].

A second issue to be considered in this context is the way sets of related statements
(i.e. RDF graphs) are represented at the level of tuples. Since both RDF statements
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and graphs are associated to URIs in the triplespace ontology (cf. Section 4.3), we can
specify the membership relation through an additional triple using a dedicated meta-
property: 〈tupleURI p:partOf graphURI〉. Moreover, the Triplespace API foresees a
series of operations allowing the manipulation of RDF graphs (cf. Section 4.2).

The model of a semantic tuple can be further refined in terms of the knowledge rep-
resentation language whose semantics is relevant for processing the tuple content in
relation with matchings. As the prospected system foresees a semantic matching be-
havior in addition to the classical Linda procedures, it might be useful to differentiate
between tuples embedding RDF, RDFS, OWL or WSML [12] data. While this distinc-
tion does not affect the basic tuple model, which remains a set of three fields, it triggers
the usage of particular matching procedures, and thus needs to be stored in the space.
Again, the triplespace ontology can be an instrument to capture this type of metadata
about the tuples and their content. The coordination operations take into account this
metadata in order to enforce the execution of a particular matching algorithm.

A triplespace is defined as a container for triples which encapsulate the RDF state-
ments. A triplespace can be divided into virtual subspaces and physically partitioned
across distributed kernels. Every space is addressed using a URI, which is installed by
the creating user and captured in the triplespace ontology. Just as in the case of indi-
vidual tuples, this URI is useful in terms of the REST communication model. A space
may contain multiple (sub-)spaces, while it can only be contained in at most one par-
ent space. The latter holds also for tuples, which are associated to a single space. In
order to allow for overlapping between space the triplespace model resorts to the no-
tion of “scopes” [28]. Scopes are temporary tuple containers. Unlike subspaces, which
form the virtual structure of the triplespaces, they can be created individually by clients
based on arbitrary filters. Scopes can be given different semantics, e.g. they could be
seen as an alternative view on the structure of the tuplespace, or as a temporary copy of
some tuples for retrieval by a client - in the latter case insertion and deletion operations
would apply to the scope and not to the tuplespace as a whole. We note two final differ-
ences between spaces and their temporary counterparts: while spaces are defined to be
non-overlapping, the notion of scopes does not impose this restriction. Consequently a
tuple can be contained in a space - and implicitly in all the direct and indirect parent
spaces of the original space - and in a multitude of possibly independent scopes (cf.
[28]). The scopes are furthermore not stored in the triplespace ontology, which captures
meta-aspects on persistent data containers such as graphs or spaces (cf. Section 4.3).
Support for scopes is subject of ongoing work also at the level of the Triplespace API,
which is introduced in the next section.

4.2 New Coordination Primitives

The Linda operations out, in and rd form the basis for any tuplespace implementation.
The basic tuplespace primitives have however soon proven to be insufficient in various
application contexts, and implementations of tuplespace platforms based on Linda have
liberally extended the coordination language for their needs. We note that extensions to
the coordination language can take different forms:
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– the extension of the coordination primitives, i.e. the specification of new operations
– the extension of the coordination semantics, i.e. the redefinition of the meaning of

the existing operations
– the extension of the coordination model, i.e. providing other instruments for ex-

pressing coordination such as programmability.

In this section we introduce the operations defined for the triplespace coordination
model and thus our extensions to the Linda coordination primitives and their meaning
in this context. We take a look at the semantics and the signatures of the operations and
discuss the rationales for taking certain design decisions. An outline of the Triplespace
API is given in Table 1.

The core operations are defined around the traditional Linda primitives. However,
due to the characteristics of RDF, where triples are not independent data containers, but
rather sets of interlinked 〈subject, predicate, object〉-tuples, it was necessary to extend
the semantics of the operations. The out operation received a multi-write characteristics
in order to allow the publication of whole RDF graphs within one call to the space. A
similar operation termed multiWrite was for instance already foreseen in TSpaces [23].

With respect to tuple retrieval we differentiate three cases depending on the scope
of the returned data. A retrieval call to the space does not return a single tuple/triple,
but rather a whole RDF construct. The way such RDF constructs are created is seen to
be an implementation detail (e.g. based on the Concise Bounded Descriptions approach
[33]). This decision is motivated by the fact that a single RDF triple hardly has any
meaning by itself. Reconsidering the examples in Section 2 it can be seen that already
very simple statements consist of several triples that isolated would not communicate
any useful information.

The primitive rda retrieves a single triple (read a triple) and the triples directly bound
to it. This is hence the Semantic Web version of the Linda rd operation. The more fre-
quently used operation is expected to be the plain rd, therefore also the simpler name.
rd returns an undetermined number of triples and its neighbors. In consequence rd is
an information retrieval operation. The amount of information (the number of triples)
returned is limited by the indeterminism of the space platform and the possible incom-
plete set of visible nodes, i.e. rd does not guarantee that all matching information in a
space is returned, although it aims for it. This conforms well to the original Linda defi-
nition and is clearly manifested by the open nature of the (Semantic) Web and the open
world assumption of Semantic Web languages such as OWL. The third retrieval primi-
tive called rdg is used to search for whole graphs (read graph). As explained previously,
the triplespace out operation accepts a triple set (i.e. RDF graphs), which can optionally
be associated with an identifier (a graph URI) to construct a so-called named graph [8]
as an input. The rdg operation allows the retrieval of a single graph that contains at least
one triple matching the template. This is particularly useful when coordinating Web ser-
vice descriptions or purchase orders, where it is indispensable that all knowledge about
one construct is retrieved at all times. To ensure that all data of a graph can be read at
once, the system will store RDF graphs at the same physical location and hence they
are either seen as a whole or not visible to a particular user at all. The three operations
are also available in destructive mode. In this case they are referred to as ina, in and ing,
respectively.
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Table 1. The Triplespace API

out(Graph g, URI space, [URI graph, URI transaction]):void
Inserts the triples included in the graph into the given space. By specifying a graph
identifier a named graph is created. A transaction identifier can be provided to add the
out to a given active transaction.
rda(Template t, [URI space, URI transaction, integer timeout]):Graph
Returns one matching triple with any triples bound to it, e.g. following the Concise
Bounded Descriptions approach. The request is executed against the given space, if
provided, otherwise against the virtual global triplespace. The timeout is used as means
to control the blocking characteristics of rda.
rd(Template t, [URI space, URI transaction, integer timeout]):Graph
This operation generalizes rda: it returns an undetermined number of matching triples
and their bound graphs; otherwise the functionality is the same.
rdg(Template t, [URI space, URI transaction, integer timeout]):Graph
Returns the entire content of a named graph that contains a matching triple; used to
coordinate whole objects.
ina(Template t, [URI space, URI transaction, integer timeout]):Graph
This is the destructive version of rda.
in(Template t, [URI space, URI transaction, integer timeout]):Graph
This is the destructive version of rd.
ing(Template t, [URI space, URI transaction, integer timeout]):Graph
This is the destructive version of rdg.
subscribe(Template t, URI space, Listener l, [URI transaction]):URI
Establishes a notification mechanism for triples matching the template. Subscriptions
must be expressed against a given space. In case of a match the listener (e.g., in Java a
class that is called in case of an event) is notified. The operation returns a handle to the
successfully registered subscription in form of a URI.
unsubscribe(URI subscription, [URI transaction]):boolean
This operation cancels a given subscription and returns true in case of successful exe-
cution.
create(URI space, [URI parent, URI transaction]):boolean
This primitive creates a new space, as subspace of parent. In case no parent space is
indicated the new space is installed as direct child of the virtual global space. It returns
true after successful creation.
destroy(URI space, [URI transaction]):boolean
This operation destroys the given space, its subspaces and all contained triples. Par-
ticular attention has therefore to be paid to rights management to avoid unauthorized
removals.

The matching procedure for the six operations is based on templates. The precise
syntax and semantics of a templates depends on the maturity of the space implemen-
tation and on the query languages and engines employed in the implementation; we
generally refer to it as template in order to proceed with a stable interaction model. In
the current release (March 2007) we use simple triple patterns that are very close to tra-
ditional Linda templates. A template is hence a tuple that contains both RDF resources
and variables: 〈x:Coordination07Paper ?p ?o〉. In the future templates will consist of
graph patterns (cf. Table 2) as common to most RDF query languages, e.g. SPARQL
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[31]. Eventually, we expect the templates to evolve to fully fledged semantic queries
or rules, which invoke reasoning engines and operate on asserted and inferred triples.
In that way we can guarantee that the matching algorithms fully exploit the semantics
of the information published. Even though it is clear that this enhanced matching al-
gorithms will be more complex than pure Linda matching, we argue that it provides a
good compromise between simplicity and matching at the level of meaning.

Table 2. Examples of Semantic Templates

TEMPLATE DESCRIPTION

?s a doap:Project;
foaf:member ?o.

Matches all triples where the subject is of type
doap:Project and where the same subject has triples
indicating the members.

?s ?p ?o.
?o a foaf:Person.

Matches all triples where the object is of type
foaf:Person.

?s foaf:name ?a;
foaf:mbox ?b.

Matches the triples that contain subjects for which the
name and a mailbox (foaf:mbox) are indicated.

Though retrieval by identifier does not correspond to the core Linda principle of asso-
ciative addressing, it was previously considered in various tuplespace implementations
such as for instance by the method readTupleById in TSpaces. As mentioned in Section
3 the Web uses unique identifiers (URI) to reference resources. The triplespaces are en-
visioned to provide a shared information space for the Semantic Web that inherits these
basic notations regarding resource identification, and thus it was a natural choice to in-
corporate means to use URIs for retrieval. In TripCom this behavior is provided by use
of metadata (cf. Section 4.3) that yields ontological descriptions of the triplespace con-
tents. The name of graphs, the context of data and their interrelationships are modeled
and stored in the triplespace ontology. The knowledge captured by this meta-model can
be used to refine queries and thus also to query RDF graphs by their name if adequate:
match all triples belonging to the graph with identifier X.

Furthermore, the retrieval operations will have a field of type integer for the spec-
ification of timeouts, and support for transactions. The timeout is used to control the
blocking disposition of triplespace requests. A positive integer interrupts the search
process after the provided number of seconds passed. If no timeout is specified the op-
eration runs in the regular blocking mode. Note that this is particulary unadvised for rd
calls due to its multi-search trait that does not come with a automatic retrieval interrup-
tion after a first discovery. Using rd without timeout results in data acquisition from the
virtual global triplespace and this might eventually not terminate.

Transaction support was already added in tuplespace systems such as JavaSpaces
[16] and TSpaces. Transactions play an important role in Web service communication
and hence this extension was taken over to the coordination model of the triplespace.
The first release does not yet integrate any support for transaction, while we plan to in-
tegrate transactions locally in a next step, i.e. a given transaction only wraps subsequent
calls at a single access node. Eventually we want to install distributed transactions over



12 E. Simperl, R. Krummenacher, and L. Nixon

multiple triplespace nodes too. This allows for transactional safe workflow executions
involving multiple agents. Just as we do not guarantee that all data in a triplespace is
visible at all times, due to physical or logical distribution, we do not guarantee that data
encapsulated by transactions are visible to any other user.

The subscribe and unsubscribe methods are used to incorporate the notification ser-
vice provided by triplespaces. Notification is an important tool for many interaction
patterns and ensures flow-decoupling of concurrent processes. The use of notification
is potentially a good compromise between easiness of implementation and expressive
power in distributed systems, for which non-blocking operations do not provide appro-
priate solutions. A subscription is done by emitting a template to an interesting space.
The subscription manager will then inform any subscriber about matching triples until
a unsubscribe call is sent.

The last two operations depicted in Table 1 are management methods used to create
and delete spaces. A space is created by giving it a new unique identifier and by possibly
attaching it as a subspace to an already existing space. The semantics of destroy is more
complex, as the removal of a space implies the deletion of all subspaces, and of the
contained data. We therefore expect that removal is only allowed to the creator of the
space, or at least that it depends on restrictive security measures. Security, privacy and
trust measures are entirely neglected in this paper, as they are seen to be orthogonal to
the presented concepts and are developed in parallel.

4.3 Triplespace Ontology

The coordination and data models for semantic tuplespaces provide the first building
blocks towards the realization of the triplespace computing paradigm [11]. However,
the crucial issues of distribution and scalability are only marginally addressed. The use
of an ontology that describes the published data, the created spaces and their interre-
lationships and characteristics is expected to provide support in tackling the additional
requirements of the open distributed scenarios targeted by TripCom. Ontology-driven
middleware management is in fact seen to be one of the major assets of semantic tu-
plespaces compared to traditional space frameworks. The use of ontologies provides
sophisticated means for data and infrastructure handling which directly influences and
likely improves the necessary distribution and scalability measures.

In this section we introduce first ideas for a triplespace ontology and the expected
benefits resulting thereof.

Metadata is an important tool to optimize management tasks, access procedures and,
in case of distributed data sources, also to improve the distribution algorithms such as
for replication or caching. Knowledge about the relationship of data items and their
context allows for more precise and effective handling and faster processing of re-
quests. Relational databases for instance use meta-information about tables, column
types and access privileges. Object-oriented databases rely on information about the
data structures, while data warehouses and reference information systems provide meta-
information about the provenance and quality of information and their sources. If such
information is normalized and formalized, i.e. in terms of an ontology, it is possible
to reason about it, to infer and combine new facts, validate them or counteract possi-
ble ambiguity or incompleteness of information. This becomes particularly evident and
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useful when dealing with distributed data sources. In other words understanding the se-
mantics of the meta-information is expected to improve and facilitate the management
tasks of the system.

In TripCom we define a triplespace ontology for three particular tasks:

– the optimization of access patterns as mentioned in Section 4.2,
– the improvement of performance and scalability of the triplespace middleware by

help of enhanced distribution mechanisms, and
– the management of the security and trust framework. The last task addresses issues

like the modeling of user roles and access permissions. Further details are out of
the scope of this paper.

The ontology modules so far developed are concentrating on the description of
triples, graphs and the spaces they are published in. Moreover the ontology addresses
the functionalities of the triplespace kernels: language and reasoning support, storage
infrastructure, installed query engines. A triplespace kernel (TS Kernel) is the imple-
mentation of a triplespace access node. An informal excerpt of the triplespace ontology
(classes and properties) is given in Table 3.2

In accordance with the definitions in Sections 4.1 and 4.2 we can see that Data items
are either RDF Triples or RDF Graphs. As already pointed out in Section 4.1 it is
also possible to serialize formalisms more expressive than RDF to triples. In order to
ensure an adequate interpretation during matching or reasoning we link Data items to
an identifier (URI) for the respective underlying language. Whenever a piece of data is
accessed, if published for the first time, altered or simply read, it is possible to register
an AccessLogEntry. The log entry contains information about the Agent that addressed
the data item, as well as the time of access and the type of access. At all times the data
is contained in a Space. The space itself can be contained in another triplespace within
a hierarchy of spaces (built using the isSubspaceOf transitive property) and is shared
by all nodes running a Kernel that manages the access to and the data of the space.
Inversely a Kernel shares a given set of spaces, relationship which is captured by the
property sharesSpace. Moreover kernels are linked to repositories in order to guarantee
data persistency. The Repositories are accessed via some QueryEngine that resolves
queries expressed in a particular QueryLanguage.

The previous paragraph depicted a short example of what is envisioned with the
triplespace ontology. The captured metadata could also be used to refine templates, i.e.
one could ask for triples matching a given pattern, but only if they were published by a
particular agent.

The more important objective of the ontology is however the scalability and per-
formance of the space installation and the discovery process (latency and quality). A
concretization of the algorithms and the required ontology support is however only in
its infancy at this stage of the TripCom project. First attempts allow to associate data
with a particular kernel by use of the property isManagedAtKernel, or to point from one
kernel to another (seeAlsoKernel) if they share particular characteristics: same type of
data, same users, to name only a few possibilities.

2 Further details on the triplespace ontology are available at http://www.tripcom.org/ontologies/

http://www.tripcom.org/ontologies/
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Table 3. Excerpt of the Triplespace Ontology

Triple :: Data
partOf Graph

Graph :: Data
hasPart Triple

Data
formalism URI
isContainedIn Space
hasLogEntry AccessLogEntry
isManagedAtKernel Kernel

Space
isSubspaceOf Space
isSharedAtKernel Kernel

AccessLogEntry
publisher Agent
date xsd:dateTime
type AccessType

Kernel
sharesSpace Space
hasQueryEngine QueryEngine
seeAlsoKernel Kernel

QueryEngine
language QueryLanguage
usesRepository Repository

In summary, the use of an integrated ontology-based meta information infrastructure
brings along two major advantages for triplespace computing:

– the inference framework of the space middleware allows reasoning not only about
the application data that is published and consumed by space users, but also about
the administrative data (metadata).

– the use of Semantic Web languages, in particular the application of RDF, allows
for an integrated platform without additional requirements on the space infrastruc-
ture, i.e. the administrative data is processed and stored by the same tools as the
application data.

5 Related Work

This paper has described the conceptual model behind triplespaces, a middleware for
coordinating knowledge processes on the Semantic Web. We consider this work to be
the first comprehensive and well-grounded specification of a model for semantic Linda.

The initial idea of combining tuplespaces and Semantic Web information has been
previously proposed in [11]. Subsequent proposals for a semantics-enabled coordina-
tion model such as [4,13,25] have however failed to address issues covered in this paper
such as the particular representation of RDF syntax, the necessary revisions of the co-
ordination primitives and the means for tuplespace partitioning and kernel distribution
required to cope with the scalability and dynamism of the Semantic Web. The approach
in [25] is deliberately targeted at a much wider range of application areas, which in-
duces a lack of focus on Semantic Web-specific issues in terms of tuple and tuplespace
models and the associated coordination operations. [4] proposes a minimal architecture
for triplespace computing, but does not provide any details on the types of tuples and
tuplespaces required in this context. The TSC project applies coordination principles to
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realize a communication middleware for Semantic Web services [13]. The approach is
built upon an existing co-ordination system which led to many design decisions being
simply carried over rather than re-assessed, as we have done, in a Semantic Web context.
For example, the access at API level is to Java objects in the space encapsulating RDF
graphs, preventing any lower granularity access at the triple level such as here. Further
on, the system is targeted at Semantic Web services, while our triplespace approach
covers the whole range of application settings on the Semantic Web. It is also unclear
to what extent the aforementioned proposals continue to respect the basic principles of
Linda, while the triplespace approach is clearly “backwards compatible”.

Semantic Web Spaces [29] was conceived a generic lightweight coordination middle-
ware for sharing and exchanging semantic data on the Web. While the types of tuples
and tuplespaces foreseen in Semantic Web Spaces are similar to the approach intro-
duced in this paper, their coordination model introduces a limited set of operations for
handling RDF triples, while not considering extensions such as notifications or transac-
tions, which are clearly required on the Semantic Web.

sTuples extended the JavaSpaces platform to support OWL data in tuple fields [21].
However, this approach has not further considered the implications of coordinating Se-
mantic Web information, as we have done. Rather, OWL graphs are exchanged within
tuples, and extracted and processed in other systems while in triplespaces we seek to
integrate a Semantic Web framework within the system.

A further distinctive feature is the triplespace ontology. The usage of ontologies for
middleware management purposes is acknowledged in [13,25,29]. However, only Se-
mantic Web Spaces provides a brief outline how such a meta-model could look like.
By contrast, our triplespace ontology is the result of a systematic ontology engineering
process, carried on in collaboration with several potential users of such a triplespace
platform in areas such as eHealth, Semantic Web services and Enterprize Application
Integration.

6 Conclusion

In this paper we reconsidered triplespace computing and the envisioned added value
of this novel paradigm for the Semantic Web and Semantic Web services with respect
to heterogeneity, scalability and dynamism. First we discussed the requirements of a
semantics-aware middleware and looked at the necessary extensions and adaptations
of the original Linda coordination model with respect to the representation of formal
knowledge and the interactions patterns on the Semantic Web. The paper presented
moreover the concepts, models and interaction primitives for the triplespace platform
of the TripCom project.

The triplespace model extends Linda mainly in what concerns the representation of
semantic data in form of RDF triples and graphs. On the one hand it was necessary to
revise the syntax and semantics of tuples and templates, on the other we adapted the
interaction primitives, out, in and rd to reflect the fact that RDF triples are identifiable
resources that presented nested and interlinked knowledge.

In order to make triplespaces scalable on Web-scale, in contrast to traditional
approaches that rather focused on corporate and thus small-scale solutions, the tu-
plespace model had to be revised as well. Moreover, we expect additional support form
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ontology-driven space management. As matter of fact we expect the application of on-
tologies to be one of the major assets compared to conventional tuplespace installations.

While the heterogeneity problem is solved by the support for Semantic Web tools
and dynamism is implicitly addressed by the inherited features of space-based comput-
ing, the scalability issue is still only marginally touched. We will therefore concentrate
on mechanisms to tackle the significant challenges of distribution in large scale sys-
tems like the World Wide Web, Grid or pervasive computing environments. Semantic
clustering of data, organization of spaces according to the internal structures of data
and the joint usage of local and global spaces are possible starting points for future
improvements to the existing semantic tuplespaces. Some of these ideas were already
materialized by use of the triplespace ontology, but not yet implemented. We thus ex-
pect that upcoming work will take up these ideas, and that solutions for the distribution
and scalability issues will be developed around them.

Moreover, the future of the Semantic Web is seen in the integration of rules lan-
guages with the currently available W3C recommendations RDF(S) and OWL. Such
complex knowledge representation formalisms and the associated sophisticated reason-
ing services they enable are still missing in triplespace computing.

The triplespace computing concepts and models presented in this paper are the first
steps in substantiating the ideas of [11]. We expect that further development will push
the integration process of triplespace computing with the Semantic Web architecture,
particularly for machine-to-machine communication:

The triplespace may become the Web for machines as the Web, based on HTML,
became the Web for humans. [11]
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Abstract. In the application layer of networks, many application ser-
vers are middleboxes in the paths of messages from source to destination.
Applications require, as a basic coordination mechanism, a way to route
messages through the proper servers. This paper elaborates and justifies
the requirements for such a coordination mechanism. It presents what
is known about satisfying these requirements, and what questions still
need to be answered.

1 Routing as a Coordination Mechanism

In any networked application, routing is a fundamental execution mechanism.
When a node sends a message, routing determines which node will receive it.

The most familiar form of routing is routing for the network layer of the
protocol stack, especially routing according to the “classic” Internet architec-
ture. From this viewpoint, the sole purpose of routing is to get a message to its
destination.

The network literature typically distinguishes between routing, meaning the
process by which routes are advertised and local routing tables are maintained,
and forwarding, meaning the step in which a router receives a message, looks its
destination up in a table, and sends the message out again. Because this paper
is concerned more with requirements than with mechanisms, there is no need to
distinguish the two concepts. Both routing and forwarding are lumped together
as “routing.”

The main point of this paper is that applications require routing to serve a
purpose in addition to getting a message to its destination. Application servers
are often middleboxes that can only do their jobs if messages pass through
them on their way from source to destination. Consequently, there should be
an application-layer concept of routing whose purpose is to include appropriate
application servers in the paths of messages, as well as to get them to their
destinations. This form of routing would serve as a coarse-grained coordination
mechanism, because it would govern both the inclusion and order of application
servers in message paths.

Like most network concepts, routing can be hierarchical. Figure 1 shows how
application routing would fit into the hierarchy. In the application layer, a
message Ma passes through a middlebox on the way to its destination. The
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Fig. 1. Routing can be hierarchical, with application and network routing implemented
in different layers. (The transport layer usually comes between the application and
network layers in the protocol stack. It is omitted here because transport protocols
interact little with routing.).

middlebox is a general application server, so it can modify the message to M ′
a,

absorb it, delay it, or replicate it.
In the network layer, Ma is encapsulated inside a message Mn that is routed

to an application router by ordinary destination routing. The application router
determines that Ma should be sent first to the middlebox. It changes Mn to
M ′

n before forwarding, so that ordinary destination routing will take it to the
middlebox. A similar process goes on in the link layer, where network (IP)
routers implement ordinary destination routing for the benefit of the network
layer.

To set the stage for a discussion of exactly what application-layer routing
should do, Section 2 gives four general reasons why an application server might
be used as a middlebox rather than an endpoint. This establishes the importance
of support for middleboxes.

Section 3 focuses on source/destination symmetry. This is the biggest dif-
ference between routing in the application and network layers, and hence the
biggest unmet need in the application layer. Section 3 illustrates the bad ef-
fects of current deficiencies on service deployment, service maintenance, and
security.

Section 4 introduces the routing capabilities of the Distributed Feature Com-
position (DFC) architecture [5]. DFC is a modular architecture for telecom-
munication services. It has been used successfully to build many voice-over-IP
services, including corporate and consumer services in daily use [3,4]. DFC incor-
porates application routing in a way that is appropriate to telecommunications,
and provides a good example of what application routing can offer to service
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developers. DFC routing has been accepted by the voice-over-IP industry, where
it is part of a new standard [6] for programming application servers.

DFC routing may be a good start, but it is not sufficient to meet the needs of
all Internet applications. Section 5 discusses additional requirements for routing
in the application layer. It seems desirable to consider building middleware that
can be shared among applications, but further research is necessary to design a
sufficiently general capability.

Although this paper is focused on recommendations for the application layer
of the Internet, it contains many examples from lower layers, particularly the
network and link layers. This is because some of the application-layer con-
cerns presented here are also relevant to lower layers, as described in [1] and
[13]. Today’s Internet has many deviations from the “classic” architecture, in
which messages move transparently between endpoints. For example, a prag-
matic definition of reachability in the Internet [14] combines the effects of rout-
ing, message filtering (primarily by firewalls), and Network Address Translators
(NATs).

Despite the common themes found in all network layers, it seems best to
focus on the application layer, for two reasons: (1) From a technical perspective,
the arguments for enhanced routing are strongest and least controversial when
applied to the application layer. (2) From a pragmatic perspective, the proposed
application middleware would meet urgent needs of application builders, and
incur relatively few obstacles to deployment. In lower layers, the need for change
is not so obvious, and the obstacles to deployment are far greater.

2 Middleboxes in the Application Layer

In the application layer, as we would expect, some applications are provided by
servers that act as the endpoints of message paths. Most Web servers function
as endpoints.

The salient characteristic of the application layer, however, is that many ap-
plications are provided by servers that are not the endpoints of message paths.
The view that servers can be middleboxes as well as endpoints is still somewhat
controversial, because of the lasting influence of the classic Internet architec-
ture. For this reason, it seems worthwhile to present in detail the motivations
for servers as middleboxes. There are four such motivations, each discussed in
one of the next subsections.

Arguments against middleboxes often invoke the end-to-end arguments [12],
but these are really principles that distinguish between the network layer and
the application layer. They say that the network layer should be minimal and
highly efficient, because it is shared equally by all applications, and because it
can perform few functions as well as application-aware software can. With this
interpretation, there is no conflict whatsoever between the end-to-end arguments
and application servers as middleboxes, because any application server is an
“endpoint” with respect to the principles [13].
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2.1 Being an Intermediary IS the Application

Some Internet applications have the purpose of acting as an intermediary be-
tween or among communicating endpoints. These applications can only be im-
plemented by servers on the message paths between endpoints.

Intermediary applications perform many common functions, for example:

• They enhance security by blocking unwanted messages. This is the motivation
for firewalls.

• They perform transcoding, protocol conversion, reformatting, or other func-
tions that enable heterogeneous endpoints to communicate.

• They filter or transform content for particular audiences, for example, chil-
dren or the disabled.

• They build multi-point connections out of point-to-point connections, and
allow the endpoints to control them by switching and conferencing.

• They improve performance in application-dependent ways. For example, they
cache Web pages.

• They improve reliability in application-dependent ways. For example, they
implement automatic retrying or retargeting.

One of the most interesting categories of intermediary consists of servers repre-
senting third parties in the communication [2]. These servers might perform func-
tions desired by the endpoints, such as acting as trusted brokers. Or they might
act against the interests of the endpoints, for example by billing or wiretapping.

2.2 Servers Enhance Endpoints

Some network applications could conceivably be implemented in endpoints, but
they are not implemented in endpoints for practical reasons.

For example, it obviously makes sense to put a voicemail capability in tele-
phones, because most home answering machines work this way. When the end-
point device is a cellphone, however, there are important advantages to putting
the voicemail capability in the network rather than in the device:

• Network voicemail provides an always-available network presence for an end-
point that is often unavailable.

• Network voicemail provides a large amount of persistent storage that is always
accessible from any device.

• Network voicemail can employ speech recognition, speech search, and text-
to-speech generation. Handheld wireless devices do not usually have access
to the resources for such capabilities.

• Network software can be updated regularly, while small consumer devices do
not usually have updatable software.

If a cellphone subscribes to voicemail in the network, then its calls must go
through a middlebox that detects failure and redirects a failed call to a voicemail
server.
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Home-network applications can integrate two or more single-media devices
into a single, virtual multimedia device. It would be very difficult to implement
such an application within the devices themselves.

Finally, from a different perspective, service providers may wish to offer value-
added communication services to consumers. They can only do this by imple-
menting them in network servers and including these servers in message paths.
If service providers can find a market for such services, it does not really matter
whether the services could, in theory, be implemented in consumer endpoints.

2.3 Name Binding

In the application layer, there are many names serving many application-depend-
ent purposes. An address is one of a node’s many names, distinguished from
others only by the fact that the network layer can route to it.

Applications create and use name spaces freely. Because of this, one of the
most common and important functions performed by applications is to bind one
name to another. The two names involved in an instance of name binding can
differ in a large number of ways, for example:

• The first name can actually refer to a group of endpoints, while the second
name refers to a member of the group. Similarly, the first name can be a
service, while the second name is a server performing the service (as an
endpoint).

• The first name can be published and long-lasting, while the second is the
current network location of the endpoint. In other words, the endpoint is
mobile.

• The first name can be public or anonymous or user-friendly, while the second
name is private or secret or inscrutable.

• The first name is one of many roles or aliases employed by the owner of the
second name.

• The first name can be global, while the second is local to a subnetwork.
Similarly, the first name can be local to one subnetwork while the second
is local to another subnetwork. This type of name binding is performed by
NATs and by gateways between networks with different address spaces.

The kind of name binding that comes first to most peoples’ minds is bind-
ing of global names by means of universally accessible lookup services such as
DNS, called lookup binding here. Lookup binding supports location-independent
names. Several additional lookup name spaces, serving different purposes within
the Internet architecture, have been proposed [9,13]. Lookup binding is also part
of popular peer-to-peer applications for file sharing and communication, each of
which creates a global name space for its own users.

There is another way to bind names in the application layer, termed path
binding to distinguish it from lookup binding. The simplest form of path binding
is shown in the left half of Figure 2. The first name is the address of a server,
here a, and the sender uses it as the destination field of a message. The addressed
server itself binds this first name to a second name a’, changes the destination
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Fig. 2. Path binding is name binding performed by a server in the message path. The
name to be bound is, or includes, the address of the server.

address of the message to a’, and forwards it. Path binding is different from
lookup binding because the binding server is a middlebox in the message path
between sender and receiver.

The right half of Figure 2 shows a simple variation on path binding in which a
name consists of both an address a and a free-form string s encapsulated in the
message. The address part gets the message to the binding server, while both
parts contribute to the choice of second name. The properties of path binding
are analyzed in [17].

Path binding is extremely common. The right half of Figure 2 depicts for-
warding in a NAT, with a and a’ being IP addresses, and s and s’ being port
numbers. If a link interface in an IP router is regarded as an implicit address,
then all IP forwarding is path binding in the link layer.

Path binding is used in the application layer, in preference to lookup binding,
in two situations. First, a path-binding server at address a need only bind names
having a as their address part, rather than knowing how to bind all names in a
namespace. Hence path binding is more local and easier to deploy than lookup
binding. For example, Mobile IP [10] uses path binding to bind published mobile
addresses to current network locations. This means that each “home agent” binds
only its own address to the current location of its corresponding mobile endpoint,
and need know nothing about other mobile endpoints.

The second situation in which applications use path binding is when they need
to include an application server in a message path, and have no other mechanism
with which to accomplish it. They introduce an artificial name binding for the
purpose of including the server, rather than including a server for the purpose
of performing a name binding. This situation is discussed further in Section 3.

2.4 Software Composition

Application servers are, among other things, modules of software. Composition—
assembling complex software by composing simpler software modules—is how we
make software development “scale up.”

The final motivation for using servers as middleboxes is that this provides
a valuable mechanism for software composition. When one or more servers sit
on a message path between two endpoints, then the relevant software of each
server is composed with the software of the other servers and the software of
the endpoints in a pipes-and-filters configuration. Pipes-and-filters composition
makes it relatively easy to augment or change an existing application by adding
to or changing the servers in message paths.
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Pipes-and-filters composition is evident in the deployment of proxies and re-
verse proxies between clients and Web servers. It is implicit in the use of firewalls,
NATs, gateways, and other common network elements. The principle purpose of
DFC (Section 4) is to support pipes-and-filters composition of telecommunica-
tion features.

Multiplayer games are a rapidly-growing application area that illustrates
many of the themes in this section. For such games to be playable, they must
satisfy stringent requirements for scalability, latency, and fairness. Achieving
this on a global scale will probably require hierarchies of middleboxes. These
hierarchies will be carefully engineered to optimize performance and arbitrate
fairness.

3 Source/Destination Symmetry

In the network layer, the sole purpose of routing is to find the destination of
a message. A router can be thought of as a server working on behalf of each
destination, helping to get its messages delivered. There is no need to “find” the
source of the message, and there are no servers acting on behalf of the source.

In the application layer, there are also servers that work on behalf of des-
tinations, helping their messages to find the destinations. With this important
exception, most reasons for including an application server in the path of a
message are potentially symmetric. If there is a destination-related reason for
including a server in a message path, probably there is a corresponding source-
related reason.

This is why Web terminology includes “proxies,” associated with clients, and
“reverse proxies,” associated with servers. In the world of Web technology, there
are reverse proxies for security (firewalls) and performance (load balancing).
There are proxies for security (anonymizing, blocking access to some sites) and
performance (caching). There are also client-side (source-related) proxy functions
that have no destination counterparts; these include reformatting for special
devices and filtering out annoying forms of advertisement.

In telecommunications, which is a peer-to-peer service, symmetry is even more
prominent. Once a telephone call has been established, its two parties are equal.
Either party (or both parties) may wish to have features that perform switching,
transfering, recording, or other mid-call functions.

Source/destination symmetry is the biggest difference between routing in the
application and network layers. Because the network layer has little need for
source-related servers, there is poor support for them in any layer.

A possible mechanism for including application servers on behalf of the source
is source-subscription routing. In source-subscription routing, an address a can
source-subscribe to another address a’. If there is such a subscription, then a
message with source address a is first routed to the node at address a’. If this
node is a server and chooses to forward the message, then the forwarded message
is next routed to its destination address in the ordinary way. Obviously, an
implementation of source-subscription routing requires a bit of history in the
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Fig. 3. Including a Web proxy in the path of an HTTP request, by means of source-
subscription routing. Address b source-subscribes to address p.

message, to distinguish the hop originating at the sender from the hop originating
at the server.

It is common for network administrators to want all browsers in their sub-
networks to make requests through a particular Web proxy. Figure 3 shows the
use of source-subscription routing to meet this goal. Address b of the browser
source-subscribes to address p of the proxy, which means that every message
with source = b is routed to p before it is routed to its destination. Note that no
address translation is required to deliver the message to the Web server through
the proxy.

In the absence of source-subscription routing, the common solution to the
proxy problem is for the browser to send its original HTTP request with desti-
nation = p, and s encapsulated in the message. When the proxy forwards the
message, it changes the destination to s. The proxy can be regarded as per-
forming path binding, binding name p[s] to s. This is an example of using path
binding to include a server in a message path rather than to perform “real” name
binding, as mentioned in Section 2.3.

This common solution has two major deficiencies. The first is that every
browser in the subnetwork must be configured to use p; ensuring this is well
known to be a problem for administrators. The second is that the solution re-
lies on the cooperation of the browser, which may not be forthcoming if the
interests of the browser’s user differ from the interests of the administrator.
Source-subscription routing avoids both the configuration problem and the se-
curity problem by keeping both information and enforcement away from the
browser.

As an alternative to the use of path binding to solve the proxy problem, one
might think of putting a routing list or stack [ p, s ] in the message. Theoretically,
this is provided for by IP source routing, although source routing is disabled in
most subnetworks. In any case, a routing list has the same configuration and
security deficiencies as the use of path binding.

For a second example of the use of source-subscription routing, consider the
problem of making a connection to a mobile endpoint, as shown in Figure 4.
Address M is the published mobile address of the endpoint, and address m is its
current network location. The requestor of the connection knows the endpoint
only by M. Ordinary destination routing and path binding enable the request
message to pass through the location server for M and be delivered to m.

The need for source-subscription routing arises when the mobile endpoint
replies to the request. The correct source address for the reply is m, yet the
initiator must receive the message with source = M. This will enable the initiator
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Fig. 4. Making a connection to a mobile endpoint, by means of source-subscription
routing. Address m source-subscribes to address M.

to identify the message as a reply to its request. Furthermore, the initiator must
continue to send all messages within the connection with destination = M. This
is necessary so that each message from the initiator goes through the location
server and is directed to the current location of M, which may be a new address
m’ rather than m.

With source-subscription routing, a current location m source-subscribes to
M or some other suitable server address. The source server receives the reply
and changes m to M in the source field before forwarding.

This design is very similar to Mobile IP, except that Mobile IP does not have
the advantage of source-subscription routing. In its absence, the mobile endpoint
sends its reply with source = M. In most cases, M does not belong to the address
space of the subnetwork of m. Hence the reply is discarded by a local firewall that
performs ingress filtering. This has been the major obstacle to the deployment
of Mobile IP [10].

A mobile endpoint can request a connection as well as accept a request for
a connection, then move during the lifetime of the connection. In Figure 4, if
the mobile endpoint were the requestor of the connection, source-subscription
routing would apply to the request message. It would be routed throught the
endpoint’s location server, and its source address m would be changed to M.

Figure 4 has some similarities to the deployment of NATs, where M would be
the single public address of the subnetwork behind the NAT, and m would be
a private address within the subnetwork. In the NAT case, port numbers would
be used to distinguish among the many private addresses represented by M, as
in the right half of Figure 2.

The NAT case is interesting here because the reply message from m is routed
through M by yet another mechanism. It is clearly not IP source routing or
source-subscription routing. It is not ordinary destination routing, because M
is not found in the destination field of the message. Rather, the mechanism is
an assumption that lower layers are configured so that a message cannot travel
from m to the public Internet except by going through the NAT.

Arguably, NATs are active agents in all of the link, network, and transport
layers, which accounts for the complexities that arise from them. This kind of
layer spanning is neither possible nor desirable for typical applications, which
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may have no special administrative privileges, and which should be organized
for easy maintenance. We return to the NAT example in Section 5.

4 Routing in the DFC Architecture

As mentioned in previous sections, the Distributed Feature Composition (DFC)
architecture supports pipes-and-filters composition of software modules. These
modules are intended to implement individual, user-controllable capabilities
known as features. In practice, the unit of composition can be a whole application
server or a software module (“virtual server”) within an application server. DFC
uses the term box to encompass application servers (whether real or virtual) and
endpoints.

This section summarizes the capabilities of DFC routing. The emphasis is on
routing behavior and the goals it satisfies, rather than on implementation; the
implementation is straightforward once the behavior is understood.

4.1 Message Paths

The full path of a message is defined implicitly by the methods used in boxes.
A box uses the new method to send a new message. A box uses the continue
method to forward an existing message.

A full message path (see Figure 5) has a source region in which it is routed to
boxes on behalf of the source, and a target region in which it is routed to boxes
on behalf of the target.1 When both source and target regions are exhausted, it
is routed to its target in the ordinary way.2

Within the source region, boxes are included because of source-subscription
routing. Within the target region, boxes are included because of target-
subscription routing. Thus a message can be routed to a box because the target
address subscribes to the box, then (when it is forwarded by the box) be routed
to another box whose network address is the target.

The source or target subscription of an address is actually a list of boxes
rather than a single box (the list can be empty). The boxes are routed to in the
order listed. The boxes in a message path present because of the source (target)
subscription of a single address are called the source (target) zone of the address.

When a box continues (forwards) a message, it can change the source or target
address. If the box lies in the source region and changes the source address, then
any remaining boxes in the source subscription of the original source address are
omitted from the message path. Rather, routing immediately begins to traverse
the source subscription of the new source address. For example, in Figure 5,
the source-subscription of address s1 is [ A, B, C ]. Box B changes the source
address to s2, however, so rather than going to box C, the message is next routed
to D. Similarly, if a box in the target region changes the target address, then the
1 DFC terminology uses “target” instead of “destination”, for brevity.
2 It is also possible to define a network region between the source and target regions,

for boxes that provide network functions such as billing.
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Fig. 5. A message path created by DFC routing

next box in the path is the first box of the target subscription of the new target
address.

We are already familiar with target-region boxes that change the target ad-
dress, because this is just another form of path binding. It is also useful, however,
for source-region boxes to change the source address. For example, a box could
change the original source address, which is the address of the calling device, to
a personal address associated with the person sending the message. This has two
benefits. First, the personal address is a better identifier of the sender for the
benefit of the receiver. Second, the message can then be routed through boxes
subscribed to by the personal address, thus utilizing their functions.

DFC routers must have access to the relevant subscription data. The necessary
routing history of an individual message is carried along in the message, so that
routers do not maintain state at that level. The routing history may be encrypted
so that boxes cannot read it.

4.2 Composition, Modularity, and Additive Authority

The path mechanisms in the previous section meet the application-layer require-
ments of composition, modularity, and additive authority.

Composition dictates that there is no such thing as a unique server. If there
is a reason why one server should be included in a message path, then the same
reason might also apply to multiple servers. DFC routing supports composition
in two ways. First, a subscription can be a list of any length, so that a zone can
contain any number of boxes (servers). Second, a region can contain any number
of zones.

Modularity dictates that servers should not know or need to know which other
servers are present in the message path. When this requirement is satisfied,
each server can be developed independently. Also, server configurations can be
changed easily, because the servers themselves need not change. DFC routing
was designed very specifically to satisfy this requirement.3

3 This simplified view of modularity is appropriate for discussion of routing, which pro-
vides coarse-grained coordination. Finer-grained coordination may require analysis
and management at the protocol level, as exemplified by [15].
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The most common violation of the modularity requirement is the use of path
binding to include servers in message paths (Sections 2.3 and 3). Often the
purpose of these servers has nothing to do with name binding. If multiple servers
are required, and if path binding is the only available means to include them,
then every server must know the address of the next server in the path.

Composition and modularity can be illustrated with Web proxies. A user
might wish to use all three of these proxies:

– A text-to-speech “edge service” proxy, which improves Web access for the
visually impaired.

– Privoxy, which is a filtering proxy that can remove advertisements and other
“Internet junk.”

– A Tor client. The Tor client encrypts and chooses an anonymized, random
route through participating Tor nodes to the requested server. The purpose
of Tor is to protect the user’s privacy, particularly from attacks by traffic
analysis.

The proxies must be applied to each HTTP request in the order shown in Fig-
ure 6. Because the text-to-speech proxy gets each request before Privoxy, it gets
each Web page after Privoxy has filtered it. Because Privoxy gets each request
before the Tor client, it gets each Web page after Tor has decrypted it.

text−to−
speech
proxy

Privoxy
client
Tor

Fig. 6. Using multiple Web proxies

With DFC routing, it would be easy to deploy the proxies in this way. It
would also be easy to make Tor optional for each such user, by allowing the
user to toggle his subscription to the Tor client. This is valuable because fetches
through Tor are inevitably slow.

With current technology, on the other hand, each proxy must be configured to
send requests to the next one. It is impossible to remove Tor from the message
path without altering the configuration of Privoxy. If Privoxy is running as a
shared server in a local-area network, then it is impossible to apply Tor to the
requests of some users and omit it from the simultaneous requests of other users.4

Finally, additive authority means that a server should be included in a message
path if one of the endpoints desires it or if the relevant administrator desires it.
As a general security requirement, it should be easy for an administrator to
ensure that all messages of a particular type go through a particular security
server. DFC routing supports additive authority because our implementations
allow both parties to contribute to the subscription lists. In practice, almost
every subscription has contributions from both parties.
4 I am indebted to Trevor Jim for this example.
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4.3 Usages

DFC is connection-oriented. For this reason, the only messages that are routed as
described above are the messages that request connections. Within each inter-box
hop of a request message, the reply message forms an independent box-to-box
connection. All subsequent signaling takes place within these connections.

DFC boxes and signaling connections form dynamic graphs called usages.
DFC usages have many interesting properties and behaviors, some of which are
illustrated by the usage in Figure 7.

VM ACB MCM CW
A A

MCM

CW ACB VMMCM MCM CW

CW

C

A A B B B
*

A

C C C

BA

D D

Fig. 7. DFC usages are dynamic graphs that evolve over time

There are four user endpoints: A, B, C, and D. DFC subscriptions actually
name types of boxes rather than boxes themselves. Each of the four endpoints
subscribes to the same box types, namely [CW, MCM, ACB] in the source region,
and [VM, MCM, CW] in the target region. The acronyms stand for Call Waiting,
Mid-Call Move, Automatic CallBack, and Voice Mail, respectively. Voice Mail is
a target-side failure treatment: if the endpoint cannot be reached, redirect the
call to a voicemail server. Automatic CallBack is a source-side failure treatment:
if an attempt to place a call fails, remember it and try again later.

DFC maps between box types and boxes as follows. There are two categories
of box type, free and bound. When a DFC router needs to route to a box of a free
type, it simply creates a fresh new instance of the box type. In contrast, there
is only one instance of a bound box type for each address that subscribes to the
type. When a DFC router needs to route to a box of a bound type, it routes to
the unique instance associated with the relevant address. In this example, Call
Waiting is a bound type, and all others are free.

In Figure 7, A has placed a successful call to B. Each box instance is labeled
with the address on behalf of which it is included in the usage. The arrows show
the direction that the request message traveled to set up these connections.

In Figure 7, C has also placed a call to A. This call is also successful, because
A has Call Waiting, which accepts the call. In this example, CW and MCM are
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reversible box types, which means that a subscriber subscribes to them in both
regions, because they are useful to both callers and callees. Reversible box types
are the ultimate example of source/destination symmetry. Although the request
from A to B was routed to CWA in the source region, the request from C to A is
routed to CWA in the target region. Now A has a signaling connection to both
B and C, and can switch the voice channel so as to talk to either B or C at any
moment.

A represents a user’s home phone, and D represents the same user’s cellphone.
While A was connected to C and talking to B, the user noticed that it was time to
go to work. He invoked the function of Mid-Call Move to move the B conversation
to his cellphone, resulting in the third row of the figure. In the next instant the
Mid-Call Move box will drop the connection marked with an asterisk, resulting in
two separate usages. The user can hand telephone A to another family member
to continue talking to C. Alternatively, hanging up telephone A will tear down
the entire usage to C.

This is a specific example of a general pattern, which is that a long-lasting
connection can be made up of connection segments that were not set up at the
same time or in the same direction. The connection from A to C has segments
set up from A to CWA and from C to CWA. The connection from B to D has
segments set up from MCMA to B and from MCMA to D. Routing correctly
in this situation requires a third method: in addition to forwarding with the
continue method, a box can forward with the reverse method [16].

Similar structures might also arise in automotive infotronics, in which most
communication consists of streams of sensor/actuator data. A sensor should be
engaged in some end-to-end connection at all times, to ensure that critical data
is not being lost, which means that some connection segments will be very long-
lasting. At the same time, the exact configuration of data streams and functional
components will vary with the vehicle’s current mode of operation.

Despite the subtlety of usages, it is possible to prove useful properties about
them [16]. For example, any connection between two endpoints X and Y with
these same subscriptions contains the following subsequence of box instances:
[ CWX , MCMX , MCMY , CWY ].5 This invariant is true regardless of how the
connection was initially formed or how it has evolved over time.

5 Unmet Requirements and Future Work

This section considers the possibility of building middleware that performs rout-
ing for the application layer. It would be deployed in the network as shown
in Figure 1. It would make applications easier to build, deploy, maintain, and
improve. It would also make them more secure.

This middleware should be shared among applications, amortizing its cost
and, more importantly, facilitating convergence among applications. The value
of current Internet applications is greatly reduced by the fact that each one
5 After the instance of MCMA moves the connection to D, we consider it an instance

of MCMD. It can be signaled from D to move the connection again.
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tends to be an isolated fiefdom. Furthermore, this isolation limits imagination
and innovation, as it prevents us from seeing the potential relationships among
applications.

5.1 Deficiencies of DFC Routing

It seems that the DFC routing capability is a good start toward meeting the
routing needs of Internet applications, but it is not sufficient. This section dis-
cusses its deficiencies for this purpose, and the research needed to remove the
deficiencies.

DFC routing was designed for the single application of telecommunications.
It has been amply illustrated that the principles of DFC routing are relevant for
other applications, taken individually. Now we need to understand how routing
could contribute to application convergence, which might mean routing messages
through servers associated with different applications.

DFC routing was also designed for a single administrative domain. Multiple
administrative domains are a fact of life in the Internet, and there are many
questions about how DFC routing should be extended to include them. For
example, consider the source and target regions in Figure 5. If the message path
extended across multiple administrative domains, would it still look like this, or
would there be a source and target region of the message path for each domain?
Interestingly, there are good arguments for both answers to this question.

All the other deficiencies of DFC routing come down to efficiency in one way
or another. As noted in Section 4, DFC routing is most often used to route
messages to virtual servers within a physical application server. In this context,
efficiency is not critical, and has received correspondingly little attention.

First, DFC routing often routes to boxes that will never be activated in this
particular communication. These boxes simply behave transparently throughout
their lifetime. The inefficiency of including transparent servers in message paths
could be reduced by offering finer-grained selection criteria.

For an example, let us return to the NAT example at the end of Section 3.
Say that a node with private address m is replying to a connection request from
the open Internet. We want to use DFC routing to route the reply through a
NAT, which will change the source address from private m to public M. Source-
subscription routing is not very good for this purpose, because it will route every
message from m to the NAT. If the message is destined for another node within
the same subnetwork, then the NAT must behave transparently. An optimal
subscription mechanism would route the message to the NAT only if the source
is local to the subnetwork and the destination is not.

Second, a DFC request message goes through a DFC router each time it is
forwarded. There should be a way to make the router visit optional, for situations
in which it is not required. Note, however, that the mandatory router visit is an
important security mechanism. Any optimization must be carefully designed to
leave the security intact, allowing only trusted parties to circumvent it.

Finally, all DFC messages other than requests retrace the exact paths laid
down by requests, with no servers omitted. Yet there are many situations in
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which subsequent messages could take a more direct route. The Session Initia-
tion Protocol [11] allows the reply to a request to skip servers by distinguishing
between record-route proxies and others. Even with DFC-style signaling to con-
trol IP media channels, the media packets themselves can travel directly from
end to end [18].

5.2 Related Work

In the current Internet architecture, the only mechanisms available for influenc-
ing or altering ordinary destination routing are IP source routing, underlying
network topology, path binding, and lookup binding. None of these as currently
used is secure, robust, and general enough to meet the full spectrum of applica-
tion requirements.

In [1], lookup binding is used to achieve the effective equivalent of destina-
tion subscription routing in DFC: a sender looks up the destination (a global,
location-independent identifier), yielding a route to traverse to get to the desti-
nation. Section 2.3 showed that lookup binding and path binding are architec-
turally different ways to bind names. Section 1 showed application-level routing
as implemented by path binding at a lower level. The use of lookup binding
in [1] shows us that lookup binding is another implementation possibility for
application-level routing.

There are several well-known middleware systems to support each of the pub-
lish/subscribe architecture and grid computing. There are also middleware sys-
tems for other coordination architectures such as distributed tuple spaces, e.g.,
[8]. In general these architectures are not concerned with middleboxes in mes-
sage paths. As a result, their routing activities tend to be overlays on ordinary
destination routing. For example, a grid architecture can be used to locate a de-
sired resource for a potential client of that resource. The location is a destination
address, which the client proceeds to use in the ordinary way.

Service-oriented architecture is such an active area that there are several
service-oriented architectures. At the simpler end, as above, the architecture
helps to locate a service for a client. Once located, the service is reached by ordi-
nary destination routing. At the more complex end, “choreography” languages
such as WS-CDL are used to create global descriptions of distributed Web-based
services. As this technology matures, we will see whether choreography is com-
patible with DFC routing, or whether it requires tight logical coupling between
servers. In the latter case, the compositional freedom supported by DFC routing
would not be required or even allowed.

A new effort to formalize what routers (in the most general sense of the term)
do promises to be relevant to the application layer [7]. In particular, it can help
to define the space from which potential optimizations can be chosen.

5.3 Future Work

Before we can propose a specific middleware system for routing in the application
layer, three broad open questions must be answered.
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First, the most powerful routing functions are expensive in terms of visits
to servers and routers. We must understand how to provide a large range of
cost/function trade-offs, and how to guide users in making choices.

Second, the proposed new middleware must support convergence of different
applications, and it must compose well with middleware for other purposes.
These are areas in which there is little general knowledge, and much research to
be done.

Third, we must understand how to extend the current routing scheme to mul-
tiple administrative domains. Both routing and subscription mechanisms must
be examined from a security perspective.

6 Summary

This paper has explained why routing through middleboxes is an important
coordination mechanism in the application layer, and justified the claim with
examples from Web services, home networks, telecommunications, mobile IP,
automotive infotronics, and multiplayer games.

The current mechanisms available for influencing routing in the Internet are
not general enough to meet the needs of applications, nor do they enhance secu-
rity or facilitate the deployment and maintenance of applications. The biggest
gap is caused by the fact that applications have a great deal of source/destination
symmetry, while routing at the network level is focused exclusively on the
destination.

The application-specific routing capability of the DFC architecture is a better
model, and meets many requirements that are shared by all applications. How-
ever, the fact that it was designed for a specific application means, inevitably,
that some requirements of different applications are neglected. This paper iden-
tifies the deficiencies and explains the questions that must be answered before
the routing requirements of all applications can be met.
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Abstract. The publish-subscribe communication paradigm is enjoying
increasing popularity thanks to its ability to simplify the development
of complex distributed applications. However, existing solutions in the
publish-subscribe domain address only part of the challenges associated
with the development of applications in dynamic scenarios such as mobile
ad hoc networks. Mobile applications must be able to assist users in a
variety of situations, responding not only to their inputs but also to
the characteristics of the environment in which they operate. In this
paper, we address these challenges by extending the publish-subscribe
paradigm with the ability to manage and exploit context information
when matching events against subscriptions. We present our extension in
terms of a formal model of context-aware publish-subscribe. We propose
a solution for its implementation in MANETs; and finally we validate
our approach by means of extensive simulations.

1 Introduction

Publish-Subscribe has emerged as a communication paradigm able to facilitate
the development of complex distributed applications in open network environ-
ments. The strong decoupling it introduces between communication parties en-
ables applications to publish information without being aware of the identities
of potential receivers or even of their existence. Similarly, it enables receivers to
issue subscriptions that express their interests in messages with a given content
regardless of the identity of their publishers. These characteristics make the par-
adigm well suited to scenarios where the set of communicating parties is subject
to frequent changes as in Mobile Ad Hoc Networks (MANETs).

Consider the problem of disseminating traffic information in a network of vehi-
cles. Messages need to be routed to vehicles regardless of their identity and based
on the interests expressed by their drivers. A vehicle moving on a freeway might,
for example, be interested in messages announcing traffic accidents or slowdowns
between its current location and its intended exit. A vehicle approaching its des-
tination might want to be notified about the availability of new parking spots
in its vicinity. Similarly, a vehicle running out of fuel will request information
about available gas stations. The publish-subscribe paradigm is a natural fit for
these types of scenarios. Vehicles witnessing an accident, leaving their parking
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spots, or observing other relevant events can publish such information without
having to know if there are any vehicles interested in receiving it.

The appropriateness of the publish-subscribe paradigm for mobile scenarios
has motivated researchers to investigate routing techniques for the dissemina-
tion of events and subscriptions over dynamic network topologies. However, these
techniques solve only part of the issues related to programming applications in
mobile networks. Mobile applications are required to assist users in a variety of
situations, responding not only to their inputs but also to the characteristics of
the environment in which they operate. In the above example, a vehicle needs
to be notified of available parking spots only when it approaches its destina-
tion and not while it is still on the freeway. Likewise, the interest in a specific
parking spot increases or decreases depending on its location, or on the pres-
ence of other vehicles also looking for a parking place in its vicinity. Similarly,
vehicles that enter a freeway after an accident has occurred should be notified
about the accident even if the accident happened some time ago. Traditional
publish-subscribe middleware offers only limited support for these aspects: for
example events are not generally associated with any notion of persistence and
propagate instantaneously through the network. This forces developers to deal
with contextual aspects at the application level preventing the middleware from
exploiting context information to optimize the dissemination of events.

In this paper, we address these limitations and develop a new kind of mid-
dleware that integrates the publish-subscribe paradigm with the requirements of
context-aware mobile applications. Such an undertaking poses significant intel-
lectual and technical challenges. Managing context at the middleware level re-
quires a richer set of primitives than those available in current publish-subscribe
implementations. Our middleware extends the publish-subscribe API and en-
riches events and subscriptions with notions of space, time, and, more generally,
with the context information associated with publishers and subscribers. Pub-
lishers can thus constrain the diffusion of events by specifying that each event
is relevant and/or visible only in a given context. In addition, they can exploit
the time dimension and define persistent events that should remain available for
a specified time after their publication. Similarly, subscribers can subscribe to
events that are relevant in specified context domains and originate at publishers
belonging to a particular context.

The paper is structured as follows. Section 2 presents our model of context-
aware publish-subscribe. Section 3 proposes a routing and matching protocol
for context-aware publish-subscribe in MANETs. Section 4 evaluates its per-
formance by means of simulation. Section 5 places our work in the context of
related efforts, and Section 6 concludes the paper.

2 Bringing Context into Publish-Subscribe

We introduce our extension to the publish-subscribe paradigm in the form of a
basic formalization. This allows us to present our notion of context and discuss
how it may be integrated into the publish-subscribe communication paradigm.
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2.1 Basic Definitions

We assume a universe consisting of hosts that move freely through the physical
space S. Each host is characterized by a unique identifier h ∈ H , a vector of
attribute-value pairs a ∈ A, and its location in space, λ ∈ S. For the time being,
we ignore the aspects related to communication between hosts and return to
them in Section 3, in the description of our routing and matching protocol.

System Configuration. At every instant in time, we can describe the configura-
tion of the system in terms of the distribution of hosts in the physical space and
the values assigned to the attribute vectors associated with each host. We model
this information by defining a system configuration as a pair consisting of two
functions: the spatial distribution and the system state. The former expresses
the geographical aspects of the system configuration by associating each host
with its current geographical location. The latter captures its non-geographical
aspects and associates each host with its current vector of attribute-value pairs.

In mathematical terms, we represent the spatial distribution and the system
state, respectively, as two functions fs ∈ Cs and fc ∈ Cc, where

Cs = (H → S) and Cc = (H → A).

Based on these definitions we model the system configuration as a pair c =
(fs, fc) where

c ∈ C = Cs × Cc.

Configuration Function. Both the geographical and non-geographical aspects of
a system’s configuration continuously vary through time due to the movement of
hosts and due to changes in the hosts’ attribute values. To model this dynamic
aspect, we consider a linear notion of time with values from the set T . This
allows us to capture the history of the system’s evolution over time by means
of a configuration function that associates each time instant t ∈ T with the
corresponding system configuration.

K : T → C

2.2 Context Specifications

Informally, we can define context to include those aspects of the state of the
environment that can affect a particular entity, henceforth called the reference
host. In an environment like a mobile ad hoc network, it is natural to define
context as a set of hosts and their associated properties that are of interest to a
given reference host, i.e., hosts that can affect its behavior, can communicate with
it, or can carry out activities on its behalf. This notion of context is reasonable
in a MANET because, in the absence of any fixed infrastructure or dedicated
servers, all information must be associated with one or more mobile hosts.

The hosts associated with a particular context can rarely be specified by
explicit enumeration because it is often impossible to know in advance which
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hosts may be of interest to a given reference host, or even which hosts are in the
system at a particular point in time. Thus, we introduce the notion of context
specification. Context specifications allow a reference host to identify the hosts
that are part of some context in terms of the properties they must have as
individuals or as a group. Individual properties are defined on a host’s location
and attribute values. The properties of a group, henceforth called relational
properties, relate the location and attributes of multiple hosts in the same system
configuration. An individual property, for example, may express the fact that
a host is “on the freeway and is traveling faster than 55mph”. A relational
property may instead identify the hosts that are “traveling faster than the hosts
around them.” The context defined by a given context specification is inherently
dynamic. The set of hosts that are part of some context may vary as a result of
changes in their locations, in their attribute values, and in those of other hosts
in the system configuration. We model a context specification as a function that
selects a group of hosts of interest from a given configuration. In this paper, we
focus on context specifications with static properties that identify dynamic sets
of hosts. However, in the most general case, the properties may also change over
time; thus, the function, denoted by α, assumes as arguments a time instant and
a system configuration, i.e.,

α(t, K(t)) ∈ Λ = (T × C → P(H ))

where the symbol P(X) denotes the powerset of set X.

2.3 Bringing Context into Events and Subscriptions

Traditionally, publish-subscribe communication is achieved by means of event
notification messages that propagate through the network to reach all matching
subscribers. Publishers define the content of each event at publication time, while
subscribers define subscription filters that operate on this content. The middle-
ware determines which subscribers should receive a given event by means of a
matching process that applies the filters associated with existing subscriptions
to the content of every newly published event. Given a universe E of possible
events, we model a specific event as a member of this set (i.e., e ∈ E ) and a
subscription as the set of events (i.e., ẽ ∈ P(E )) of interest to the subscriber.
Formally, this reduces matching to a simple membership test, e ∈ ẽ.

As we pointed out in Section 1, the publish-subscribe communication model
exhibits several limitations that hamper its applicability in context-aware appli-
cations for mobile network scenarios. In the remainder of this section, we remove
these limitations and add several new features that allow publish-subscribe mid-
dleware to respond not only to the interests of subscribers as they change over
time, but also to the evolving context in which subscriptions and events exist.

– We unify the treatment of events and subscriptions by allowing both of them
to remain available in the system until a specified expiration time.

– We allow events and subscriptions to exist within a limited scope, which we
call context of relevance in the case of events and context of interest in the
case of subscriptions.
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– We enable publishers and subscribers to use context specifications to restrict
the identity of their communication parties based on their current context
by defining publication and subscription domains.

Persistent Events and Subscriptions. The first characteristic we introduce in our
context-aware publish-subscribe model is the ability to define events that may
remain available in the system for an arbitrary time after their publication. To
achieve this, we have each publisher associate an expiration time τe ≥ 0 with
each of its event notifications. This implies that, at each time instant τ , an event
is active and may be matched by a subscription only if its expiration time τe has
not elapsed.

The notion of expiration time allows us to distinguish between instantaneous
and persistent events. Instantaneous events correspond to those available in tra-
ditional publish-subscribe middleware and are characterized by an expiration
time that coincides with their publication time. Persistent events, on the other
hand, are those for which expiration occurs later than the time of publication.
Persistent events enrich the paradigm with the ability to maintain state in event
notifications by extending their relevance over an arbitrarily long period of time.
This allows the middleware to address situations like the freeway scenario men-
tioned above, in which the event notifying vehicles of the accident should remain
available after the accident has occurred.

Following the same pattern as with event notifications, we also introduce an
expiration time τs ∈ T in the case of subscriptions. According to intuition, a
subscription is active and available for matching at a given time instant if its
expiration time has not elapsed.

Contextual Relevance and Interest. The second characteristic we introduce in
our model is the ability for publishers to associate their events with information
about the context that may be affected by them. Consider the example in Fig-
ure 1a: an accident happens on the freeway at mile 32 as indicated in the figure.
One of the cars involved in the accident publishes a persistent event to inform
oncoming vehicles of the danger. Ideally, the event should propagate towards
vehicles that are approaching the accident site and not to those that are already
past the accident or traveling in the opposite direction. To make this possible,
the publisher associates the event notification with a context of relevance. The
context of relevance represents the context that, according to the publisher, will
be affected by the event or in which the event will be relevant: in this case the
vehicles that are traveling east between miles 20 and 32. The set of hosts that
constitute the context of relevance is dynamic and thus cannot be computed once
for all by the publisher and encoded in the content of the event. The context of
relevance may, in fact, vary over time due the mobility of hosts or due to changes
in the values of their attributes. We address these dynamic aspects by modeling
the context of relevance as a context specification r ∈ Λ. The context of rele-
vance expresses the opinion of the publisher regarding the context that may be
affected by the event or in which the event should be considered relevant. This
means that subscribers outside an event’s context of relevance may still request
that the event be delivered to them.
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Consider again the above scenario. A short while after the accident, car X
leaves its parking lot and intends to travel along the freeway where the accident
happened. The middleware, should enable car X to issue a subscription that
matches the events that may affect the road it intends to take. To make this
possible, we allow subscribers to associate a context of interest with their sub-
scriptions. Similar to the context of relevance, the context of interest is described
by a context specification r̃ ∈ Λ and identifies a set of hosts that may change
over time due. An event’s context of relevance matches a subscription’s context
of interest if the sets of hosts they identify have a non-empty intersection. In
Figure 1a, the context of interest of car X’s subscription consists of the hosts in
the area identified by the dashed contour. This allows subscriber X to receive
the information about the accident from the hosts in the dashed area and decide
on a different route.

Constraining the Sets of Publishers and Subscribers. The notions of relevance
and of interest allow publishers and subscribers to associate a contextual scope
to events and subscriptions. However, they do not allow them to restrict the
identity of their communication parties based on their current contexts. Con-
sider again the above scenario: the highway patrol has several stations along
the freeway, each responsible for accidents that happen in a specific section. To
detect accidents, each station subscribes to events regarding the freeway. How-
ever, it must also be able to specify that the publishers of these events should be
located in the section it is responsible for. In this case the information about the
accident should be received and handled by the station at mile 30 and not by
the one at mile 25, regardless of the event’s domain of relevance. To make this
possible, each station associates its subscription with a publication domain: a
context specification that, for each time instant and configuration, identifies the
publishers whose events may be matched by a given subscription. In the above
example, the station at mile 30 specifies that it wants to receive events published
by cars involved in accidents between miles 28 and 33.

In a similar manner, publishers may want to restrict the identity of possibly
matching subscribers based on their own context information. After intervening
on the scene, the highway patrol attempts to speed up traffic by forcing vehicles
with less than two occupants to exit at the last available exit before the accident.
To inform vehicles of this decision it publishes a persistent event, stating that
it should reach only the cars with only one occupant. To make this possible,
the highway patrol associates a further context specification with its event: the
subscription domain. This context specification states that the event may be
received by subscribers that have a matching subscription filter, only if they are
in the specified context (in this case, if they have only one occupant).

As with all other context specifications, we model the publication and sub-
scription domains as two functions: respectively p̃ ∈ Λ and s̃ ∈ Λ that associate
each time instant and configuration with a set of publishers or subscribers.

Events, Subscriptions, and Matching. The extensions we just defined allow us
to enrich the publish-subscribe model with the notions of context-aware events,
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(a) Accident Scenario

Event: Subscription:

p ∈ H publisher’s identifier
e ∈ E content of the event
τe ∈ T expiration of event
r ∈ Λ context of relevance
s̃ ∈ Λ subscription domain

s ∈ H subscriber’s identifier
ẽ ∈ P(E) filter on content of events
τs ∈ T expiration of subscription
r̃ ∈ Λ context of interest
p̃ ∈ Λ publication domain

(b) Event and Subscription Format

Fig. 1. Application Scenario and Event-Subscription Model

subscriptions, and matching. We define a context-aware event — henceforth
called event — as a tuple [p, e, τe, r , s̃ ]. As summarized in Figure 1b, the tuple
includes the identity of the publisher, the content of the event, its expiration
time, the context of relevance, and the subscription domain. In a similar manner,
we define a context-aware subscription — henceforth called subscription — as a
tuple [s , ẽ, τs, r̃ , p̃]. As summarized in Figure 1b, this tuple consists of the identity
of the subscriber, the subscription filter, the expiration time of the subscription,
its context of interest, and its publication domain.

The definitions of context-aware events and subscriptions allow us to model
the concept of context-aware matching as a direct extension of the matching
operation for traditional publish-subscribe. As in the traditional case, the goal
of matching is to determine whether a given event should be delivered to a given
subscriber. However, our context-aware matching process must also take into
account the current configuration of the system. Let us assume that each context
specification in a given event-subscription pair is evaluated at time instant τ ,
and let c = K(τ) denote the system configuration at that instant. Then we can
state that a given event matches a given subscription if and only if the following
five conditions are satisfied.

– (i) standard matching : the event content matches the subscription filter as
in standard content-based publish-subscribe.

e ∈ ẽ
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– (ii) lifetime validity: the event and the subscription have not expired.

τ ≤ τe ∧ τ ≤ τs

– (iii) interest-and-relevance overlap: the context of relevance of the event and
the context of interest of the subscription intersect each other.

r(τ, c) ∩ r̃(τ, c) �= ∅
– (iv) publication domain matching : the publisher is part of the context iden-

tified by the subscriber’s publication domain.

p ∈ p̃(τ, c)

– (v) subscription domain matching: the subscriber is part of the context iden-
tified by the event’s subscription domain.

s ∈ s̃(τ, c)

3 Routing and Matching in a Context-Aware
Publish-Subscribe System

The definition of matching presented in Section 2.3 forms the basis for our rout-
ing and matching protocol supporting the context-aware publish-subscribe para-
digm. The protocol is based on the idea that persistent events and subscriptions
should be maintained by the hosts in the contexts of relevance and of interest
until their expiration time. For a given event-subscription pair, the matching
process is initiated by the hosts in the intersection of these two contexts, by
evaluating conditions (i), (ii), and (iii): standard content-based matching, event
and subscription lifetime, and the overlap between the contexts of relevance and
of interest. If this evaluation is successful, further processing depends on whether
the subscription includes a publication domain, i.e., whether it requires the eval-
uation of condition (iv). If this is the case, the host that is carrying out the
matching operation must contact the publisher. Otherwise, it simply forwards
the event to the subscriber for the evaluation of the subscription domain, i.e.,
condition (v), and for possible delivery to the application.

3.1 Assumptions and Requirements

To manage the complexity of context-aware matching, we built our protocol
over a geocast routing service [17] and we assume that the contexts of relevance
and of interest are always associated with some geographical component that
identifies a region of the physical space. Moreover, we constrain the relational
properties associated with the contexts of relevance and of interest to operate on
groups of hosts within a one-hop neighborhood and on an application-defined
subset of attributes, henceforth called key attributes. Hosts exchange periodic
beacons that contain information about their current location, their location at
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the time their previous beacon was sent, and the current values of their key
attributes. This allows relational properties to be evaluated locally by the hosts
in the contexts of relevance and of interest, without issuing a query for each
matching operation. For the publication and subscription domains, however,
relational properties may exploit non-key attributes and may refer to groups of
hosts beyond a one-hop range. To achieve this, we assume the use of a query
dissemination service like the one in [22].

Finally, it is worth noting that all the context specifications in events and sub-
scriptions refer to the system configuration when matching occurs. If publishers
or subscribers want matching to operate on their state at publish or subscribe
time, they can store this information as part of their events or subscriptions at
the time they are issued.

3.2 Main Protocol Operation

The protocol exploits four data structures maintained by each network host (h)
for the management of events and subscriptions.

– Event table: stores the unexpired events that have a geographical component
of the context of relevance that includes host h.

– Subscription table: stores the unexpired subscriptions that have a geograph-
ical component of the context of interest that includes host h.

– Local event table: stores the unexpired events issued by host h.
– Local subscription table: stores the unexpired subscriptions issued by host h.

In addition, each host maintains a neighbor table that records the location
and key attributes of neighboring hosts. This information, gathered with pe-
riodic beacons, is used in the evaluation of relational properties. Finally, the
geocast protocol records the identifiers of recently received messages to prevent
the transmission of duplicates.

Matching Subscription Interest Against Event Relevance. We begin our
description by considering the publication of an event. The publisher first stores
the event in its local event table. Then, it uses the geocast service to forward the
event to the geographical region associated with its context of relevance. Each
host in this region reacts to the receipt of the event with the following steps.
First, if the event is persistent, the host stores it in its event table. This is done
even if the non-geographical properties of its context of relevance are not cur-
rently satisfied. The dynamic nature of attribute values can in fact cause these
properties to be satisfied at a later time. Second, the host carries out the first
three steps of the context-aware matching process. First, it verifies whether the
current values of its own attributes satisfy the individual properties associated
with the context of relevance, and whether the key attributes of the hosts in
its neighbor table satisfy the corresponding relational properties. If this is the
case, it attempts to match the event against each unexpired subscription in its
subscription table. This involves evaluating the subscription filter of each sub-
scription against the content of the event and determining whether the attributes
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of the host and the key attributes of the hosts in its communication range satisfy
the properties associated with the subscription’s context of interest. If these first
steps of the matching process are successful, the host takes action to deliver the
event to the subscriber. In the accident scenario of Figure 1a, the hosts in the
highlighted region will forward the event about the accident to the subscribers
that expressed an interest in traffic information regarding the stretch of highway
affected by the accident.

Delivering Events To Subscribers. For each event and subscription, the above
matching process occurs at the intersection of the geographical regions associated
with the contexts of relevance and of interest. Let us refer to this intersection
as the matching area. A host that detects a positive match between an event
and a subscription, prepares a matched-event message that encodes both the
event and the information on how to reach the subscriber as shown in Figure 2
and discussed in greater detail in the following. Different matched-event messages
generated by different hosts in the matching area for the same event-subscription
pair are indistinguishable to the geocast protocol, which can therefore reduce
the number of redundant messages by dropping multiple copies and by passively
listening for other nodes’ transmissions before forwarding a packet.

Matching Subscriptions against Persistent Events. Subscriptions are dissemi-
nated with a similar mechanism as events. A subscriber that issues a new sub-
scription first stores it in its local table; then it forwards it to the hosts in the
region associated with its context of interest. When a host in the region receives
the subscription, it first stores it in its subscription table, and then it checks if
its attributes and the key attributes of the hosts in its neighbor table satisfy the
properties specified by the subscription’s context of interest. If this is the case, it
attempts to match the subscription against the unexpired persistent events con-
tained in its event table. As in the above case, this involves evaluating whether,
for each event, the conditions specified by the context of relevance are satisfied,
and whether the subscription filter is satisfied by the content of the event. If
these matching steps are successful, the event is forwarded to the subscriber as
described above.

Managing the Publication and Subscription Domains. The protocol we
just described exploits the contexts of relevance and of interest to direct events
towards matching subscribers. In the following, we show how it can also evaluate
the subscription and publication domains of events and subscriptions.

Subscription Domain. Let us consider an event with a subscription domain that
is matched against a subscription without a publication domain. The subscrip-
tion domain is evaluated by the subscriber upon receipt of the matched-event
message. The subscriber uses its current location, its attribute values, and those
in its neighbor table to evaluate individual properties and the relational proper-
ties referring to the key attributes of the hosts in its one-hop neighborhood. If
this first evaluation is successful, it issues a query to retrieve information about
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Fig. 2. Routing without (a) or with (b) a publication domain

the values of non-key attributes or of the attributes of hosts beyond the one-hop
range. If the results of the query satisfy the relational properties of the sub-
scription domain, the event is delivered to the application. Figure 2a shows the
messages exchanged by the protocol in this situation.

Publication Domain. The protocol is slightly more complex when the publication
domain is specified. A host that completes the first three steps of the matching
process must in fact communicate with the publisher to retrieve information
about the current configuration. To achieve this, it sends a matching-request
message to the publisher. The message contains the identifier of the event being
matched, the specification of the publication domain, and information on how to
reach the subscriber. The publisher reacts to the matching-request by evaluating
the publication domain and, in case of a positive match, by sending a matched-
event message to the subscriber using the information contained in the matching
request. A schematic view of this behavior is shown in Figure 2b.

Managing Host Mobility. So far, we have described our protocol by ignoring
a key aspect of the system, host mobility. In the following we return to this
issue and describe our mechanism to handle changes in host location. There are
two aspects of our protocol that are affected by the ability of hosts to move: the
ability to reach publishers and subscribers with matching-requests and matched-
event messages during the matching process, and the maintenance of events and
subscriptions in the regions of relevance and of interest.

Mobility of Publishers and Subscribers. To address the first issue, publishers
and subscribers label their events and subscriptions with information about how
they can be reached. Specifically, they associate each event or subscription with a
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reachability region, a geographical region computed on the basis of their current
location and predicted movement. When routing a matching-request or matched-
event message to a publisher or subscriber, a host uses the geocast service to
deliver it to all the hosts in the reachability region. The description of the reach-
ability region of the subscriber is also included in each matching-request sent to
the publisher of a possibly matching event.

In principle, the reachability region should cover all the possible locations
of a host throughout the lifetime of a persistent event or subscription. This,
however, would result in exceedingly large regions for events and subscriptions
with non-trivial lifetimes. Therefore, publishers and subscribers are allowed to
update their events and subscriptions with new reachability regions. Updates
are sent both periodically and whenever a publisher or subscriber gets within a
specified safe-distance from the boundary of its reachability region.

Mobility in the Regions of Relevance and of Interest. To maintain events and
subscriptions in dynamic regions of relevance and of interest, we combine the
above updates to events and subscriptions with a reactive approach. Specifically,
the hosts in the regions of relevance and of interest monitor their neighbors to
determine if they have just entered a region associated with any of their events
or subscriptions. To achieve this, hosts include, in each of their beacons, their
current location and the one at the time they sent the previous beacon. If,
using this information, a host determines that some neighbors have just entered
any of the regions associated with the events and subscriptions in its tables,
it broadcasts a digest message containing the necessary information to update
their event and subscription tables. Finally, to improve reliability, publishers
and subscribers may send each event and subscription to a region that is slightly
larger than the actual region of relevance or of interest.

4 Simulation

We evaluated the performance of our protocol by means of a detailed simulation
study based on OmNet++ [28] a popular open-source simulation system. We
modeled the physical and MAC layers using Omnet++’s mobility framework.
Specifically, we adopted an 802.11 MAC over which we placed a custom imple-
mentation of a receiver-based geocast protocol that provides the ability to route
messages to a region of the physical space.

4.1 Simulation Setup

We consider a reference scenario consisting of 100 hosts in a 1000m×1000m area.
The movement of hosts follows the random way-point mobility model, with a
minimum speed of 1m/s, a pause time of 0s, and a maximum speed of 10m/s.
For each measurement we executed 10 simulation runs of 450s each.

We model contextual attributes by associating each host with a randomly
chosen integer value. According to the discussion in Section 3.1, the contexts of
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relevance and of interest are always associated with a geographical region, repre-
sented by a 100m × 100m square. For the publication and subscription domains
we consider the worst case scenario by using only non-geographical context spec-
ifications. Specifically, each is configured to match 50% of the available attribute
values.

Publishers and subscribers each constitute 20% of the hosts in the network.
Each subscriber issues a subscription every 50s: the subscription is either instan-
taneous or has a 50s lifetime. Similarly each publisher generates an event every
10s that is either instantaneous or has a lifetime of 10s. Moreover, 50% of the
subscriptions are associated with a publication domain. The size of reachability
regions of publishers and subscribers is set to 50m × 50m. Events and subscrip-
tions are refreshed every 5s or whenever the publisher or subscribers gets within
10m of the region’s boundary. In the absence of other traffic, hosts exchange
beacon messages every 5s. Finally, to improve reliability, event and subscription
updates are sent to regions with sides that are 60m larger that those of their
actual destinations.

4.2 Protocol Performance

We consider two performance metrics in the evaluation of our protocol: de-
livery rate and communication cost. To evaluate the former, we compare our
protocol against an ideal protocol that instantaneously matches events against
subscriptions based on information about the entire system configuration. The
delivery rate is the ratio between the number of events successfully delivered by
our protocol and those that would be delivered by such an ideal system. The
communication cost, on the other hand, is measured as the number of Mbits
transmitted at the physical layer. To evaluate the impact of the application sce-
nario on these two metrics, we individually vary four of the above parameters:
the speed of hosts, the size of the network, its density, and the percentage of
subscriptions that require the evaluation of the publication domain.

Impact of Host Speed. We first consider the performance of our protocol with
increasing host speeds. The plots in Figure 3a show the results obtained with
hosts that move with a minimum speed of 1m/s and a maximum speed ranging
from 1m/s to 20m/s. According to expectations, delivery rate decreases with
increasing speed from a value of over 96% with a maximum speed of 1m/s to a
value of 90% with a maximum speed of 20m/s. This is due to the combination of
two phenomena. First, the accuracy of the geocast protocol naturally decreases
with speed. Second, the higher the speed, the more likely hosts are to move out
of the regions of relevance and of interest. In general, a host that enters either
region will receive the corresponding event or subscription in a digest message
from one of the hosts already in the region. However, if there is no other host
in range that can communicate this information, the new host will be unable to
retrieve the event or subscription until the next refresh message.

The bottom plot in Figure 3a shows the effect of speed on communication
cost for the protocol. The cost decreases when the maximum speed increases
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Fig. 3. Impact of host speed and system scale over delivery rate and communication
cost

from 1m/s to 10m/s as a result of the drop in the delivery rate associated with
high mobility (93% with a maximum speed of 10m/s). When the speed increases
even further, such a decrease is balanced by an increase in control traffic: digest
messages, and refresh messages for events and subscriptions. It is worth noting
that the cost remains limited (increasing from 42Mbit to 46Mbit) even at the
maximum speed of 20m/s. In particular, we verified that flooding events in the
same scenario would result in a cost ranging from 83Mbit to 94Mbit without the
ability to manage the contextual aspects of events and subscriptions.

Impact of System Scale. Next, we evaluate the scalability of our protocol by
varying the size of the network with a constant host density of 100 hosts per
square kilometer. Results are depicted in Figure 3b. The top plot shows that the
delivery rate of our protocol is largely independent of system scale and remains
around a value of 92%. An increased scale at a constant host density simply
results in a larger number of hops to reach the hosts in the matching area and
to deliver matching events to subscribers. Our geocast-based protocol is able to
address this increase without significantly decreasing its ability to deliver events.
Moreover, the bottom plot in Figure 3b shows that network traffic increases as
the cube of the side of the simulation area. This can be easily explained by ob-
serving that the number of events and subscriptions in the system grows linearly
with the number of publishers and subscribers and thus quadratically with the
simulation area. This, together with the fact that each event and subscription
must travel a path that is approximately linear with the number of hosts, yields
the cubic relationship shown in Figure 3b. In real-world applications, scalability
should be further improved since the density of events and subscription is likely
to be lower.

Impact of Host Density. Our next experiment analyzes the behavior of our proto-
col with different host densities. We vary density by changing the simulation area
while employing a fixed number of hosts, one hundred. Specifically, we simulated
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Fig. 4. Impact of host density and of the evaluation of the publication domain on
delivery rate and communication cost

areas yielding host densities ranging from 44 to 400 hosts per square kilometer.
The results are shown in Figure 4a. The top plot highlights the good performance
of our protocol in terms of delivery rate (over 90%) for host densities higher than
60 hosts per square kilometer. With lower densities, network connectivity may
not be guaranteed at all times and the geocast protocol is more likely to expe-
rience routing errors due to local minima. Mechanisms to address this, such as
perimeter routing or store-&-forward approaches, may improve performance at
low densities. However, their evaluation is outside the scope of this paper.

The bottom plot in Figure 4a shows the behavior of the protocol in terms of
network traffic. The increase in host density determines the presence of a larger
number of hosts in the regions associated with the contexts of relevance and of
interest. This causes an increase in the number of receivers for each event, which
translates into the increase in network traffic evidenced by the figure.

Impact of the Publication Domain. The last scenario parameter we consider is
the percentage of subscriptions that require the evaluation of the publication
domain. As described in Section 3.2, the evaluation of this context specification
requires publishers to be contacted after their events have been matched in the
intersection of the contexts of relevance and of interest. The data depicted in the
bottom plot of Figure 4b confirms the intuition that this process has an impact
on the communication cost of the protocol. Matching-request messages account
for almost 10% of the overall network traffic when the publication domain must
be evaluated for every pair of event and subscription. The top plot in Figure 4b,
on the other hand, shows that the delivery rate is almost unaffected by this pa-
rameter, despite the longer distance traveled by events before reaching matching
subscribers.

5 Related Work

Recent advances in mobile computing infrastructures have led to increasing in-
terest in context-aware applications that can respond not only to user inputs but
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also to the characteristics of the environment in which they operate. To support
these applications, the research community has proposed several middleware
solutions that aim to facilitate software development [11,20,16,25].

In particular, researchers have followed the success of publish-subscribe mid-
dleware for large-scale wired networks [4,2,23,24,5,14,10,21,13,15,26,27] and have
investigated solutions for publish-subscribe communication in environments such
as MANETs. The solutions in [30,18,29,1,8,7] take a first step in the development
of protocols that implement the publish-subscribe model in a mobile environ-
ment. In this paper, we continue this effort and extend publish-subscribe with
the ability to manage and react to context at the middleware level.

Such capabilities are available only in very basic forms in existing middleware.
The work in [9] proposes a location-aware extension to the publish-subscribe
model in which events and subscriptions can be associated with geographical
scopes that resemble our publication and subscription domains. Nonetheless, the
management of location information is only one of the needs of context-aware
applications. Moreover, while the authors list MANETs as a possible applica-
tion scenario, they only consider a general-purpose tree-based solution that is
not backed up by a performance evaluation. Scalable Timed Events And Mo-
bility (STEAM) [19] ties the locations of publishers with that of subscribers by
proposing a proximity-based event model for MANETs. Events are distributed
only in a limited geographical area centered around the publisher’s location. This
results in a limited model that cannot easily represent scenarios like those we
consider in this paper. The same limitation affects the work in [12]. While its
authors propose a notion of persistent events and subscriptions, their matching
model requires the publisher and the subscriber of a matching event-subscription
pair to be within a region centered around the other.

In [6], events are associated with a location of occurrence and subscrip-
tions with a geographical predicate. Publishers are therefore unable to control
the dissemination of their events. Moreover, the system exploits a centralized
spatial matching engine that is clearly unsuitable for the MANET scenarios
we target. Finally, Fulcrum [3] tackles the definition of context-aware publish-
subscribe from a different angle and presents a system for large-scale context-
aware publish-subscribe based on an open-implementation approach. Clients
may specify user-defined strategies to implement complex filters that match com-
binations of events occurring at different locations in the network. Its current
implementation, though, relies on a static backbone of brokers which may not
always be available in scenarios such as MANETs.

6 Conclusions

Publish-subscribe has emerged as a communication paradigm able to facili-
tate the development of complex reactive applications in open network environ-
ments. Yet, current systems still offer only partial support for the management
of context in mobile applications. In this paper, we proposed an extension to
the publish-subscribe paradigm that enables the middleware to factor context
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information into events and subscriptions. This gives publishers and subscribers
the ability to control the diffusion of messages and to restrict the identities of
communication parties. We support this model with a protocol for the dissem-
ination of context-aware events and subscriptions in MANETs. We based this
initial protocol on geocast to aid the management of the geographical compo-
nents of context, but we are also planning to investigate alternative routing
approaches. Our simulation analysis shows that our protocol achieves high de-
livery rates in the presence of mobility while exhibiting good scalability prop-
erties. This suggests we can expect even better performance in many real-world
scenarios.
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Abstract. Workflow management systems control activities that are performed 
in a distributed manner by a number of human or automated participants. There 
is a wide variety of workflow systems in use, mostly commercial products, and 
no standard language has been defined in which to express workflow specifica-
tions. In this paper we propose Workflow Prolog, a new extension of Prolog. 
The language allows workflow systems to be implemented in a novel declara-
tive style, while preserving the existing properties of Prolog, such as its famili-
arity and efficiency. We then demonstrate the expressiveness of the language by 
showing how it can express each of the workflow patterns that have previously 
been identified as the requirements of a workflow language. 

1   Introduction 

Workflow management systems (WFMSs) automate the flow of tasks, information, 
and data between people or other entities in an organization. A WFMS is controlled 
by a description of the business processes to be automated, where a process comprises 
a number of primitive activities performed by participants. Activities may be manual 
(performed by human participants) or automated (performed by software, etc.). Like 
processes in computer systems, a business process can have many instances, which 
run concurrently and might synchronize and communicate with each other. Differ-
ences from computational processes are that (a) activities are generally outside the 
control of the WFMS, and (b) business processes might “run” for a very long time. 

In a WFMS, a business process is described by a process definition or workflow 
specification. In general, this may describe the control flow (the order of activities in 
a process), the data flow between participants, the resources needed, and possibly the 
detailed actions of activities. The process definition is written in a workflow language. 

There are many different WFMSs, most of which are commercial products. A 
sample of 15 of them has been evaluated by van der Aalst et al in [1]. There is also a 
wide variety of workflow languages: most products use a different proprietary lan-
guage, and independent workflow languages have also been proposed, for example  
[2, 24, 4]. These often provide a graphical syntax and sometimes have an underlying 
formal semantics. The languages differ fundamentally in major ways. 

Although there is no standard workflow language, there have been some useful at-
tempts to analyse the various existing languages and identify common characteristics. 
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One is the standardization effort by the Workflow Management Coalition [27, 28]. 
Another is the survey in [1], which identifies 20 patterns that abstract the control flow 
features found in the various languages and lists which languages support each pat-
tern. The authors observed that none of the WFMSs surveyed supports all of the pat-
terns. See also [29]. These workflow patterns are a good guide to the kind of features 
that a workflow language should support, and so we return to them in Section 3. 

Many workflow languages are based on a formal framework, the most popular of 
which is probably Petri nets or some high-level variant; for example [2, 18]. These al-
low automatic verification of workflow properties, such as freedom from deadlock. 
There has also been some work on using various forms of logic for modelling and 
reasoning about workflow, which we briefly survey in Section 4.2. 

In this paper, we are interested in a logic programming approach: i.e., using a 
logic-based language to implement WFMSs. In principle, this should offer a high-
level declarative way to develop such systems. For this, we need a logic programming 
language that can conveniently express workflow problems. 

Concurrent logic programming languages (e.g., [6, 23]) have long been used to im-
plement concurrent applications, so they are obvious candidates for workflow pro-
gramming in logic. However, they have several drawbacks with respect to workflow: 

• A WFMS needs to interact with activities outside the system, which are performed 
by external participants: either humans or existing programs. This need is not ad-
dressed by concurrent logic programming languages. 

• Communication by incrementally binding logical variables — a key feature of 
concurrent logic programming — is not a natural way to communicate with work-
flow participants. In general, it requires shared memory. 

• Processes in a WFMS are persistent: they might run for days or even years, but a 
concurrent logic program runs only as long as its host machine is switched on. 

Prolog systems with coroutining provide some of the expressive power of concur-
rent logic programming languages, and have additional advantages. However, they 
suffer from the same drawbacks as concurrent logic programming languages. 

We propose a new logic programming language, Workflow Prolog, intended to en-
able the implementation of WFMSs in logic. Key features are: 

• Workflow Prolog is an extension of Prolog, not a completely new language. A 
program deviates from Prolog only where necessary for workflow purposes. This 
means that users do not need to learn a new language, and can benefit from the 
availability of efficient and well-supported Prolog implementations. 

• A workflow variable: an asynchronous bidirectional communication variable, al-
lowing communication with workflow participants. This is used together with an 
asynchronous RPC (remote predicate call), which represents the effect of a work-
flow activity in the form of a goal: a relation on a workflow variable. 

• A coroutining mechanism, using guards, to receive results from activities on work-
flow variables and suspend when necessary. Deep and nested guards are possible, 
for expressiveness. 

• Time constraints, for a declarative treatment of time. 
• A garbage collector that automatically cancels workflow activities. 
• Persistence, to handle long-lived workflow processes. 
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In this paper, Section 2 describes the Workflow Prolog language, justifies its de-
sign, and illustrates its use with example programs. In Section 3 we show how each of 
the workflow patterns of van der Aalst et al. [1] can be expressed in the language. 
Conclusions, including related work, appear in Section 4. 

2   Workflow Prolog 

We view a WFMS as one component of a distributed system, which comprises the 
WFMS and a number of participants. A workflow programming language is needed to 
implement the WFMS but not the participants, which in general may be existing ap-
plications or even humans. Therefore, a workflow language need not be a complete 
distributed programming language; it just needs the ability to create and manage con-
current (business) processes and assign activities to participants. The language need 
not even feature true concurrency, provided it has some kind of coroutining ability. 
We attempt to demonstrate this below, particularly in Section 2.4. 

Workflow Prolog is a new workflow programming language based on logic. One 
of our design aims has been to avoid designing a completely new language. Instead, 
we have added to an existing language (Prolog) only the features necessary for work-
flow programming. Workflow Prolog is essentially the same as Prolog but with a few 
extensions, notably a form of coroutining, which are described and justified below. 

2.1   Workflow Variables 

An activity is the smallest unit of work scheduled by a WFMS as part of a process 
[28]. After being invoked by the WFMS, the activity is performed independently by a 
participant; when completed, the participant returns the activity’s results to the 
WFMS. We assume that there is no communication between the participant and the 
WFMS while performing the activity. 

A workflow language therefore needs a way to (a) invoke an activity, identified by 
the name of the participant, (b) pass input data to the activity, (c) wait for the activity 
to complete, (d) receive output data when the activity is complete. 

In general, this seems to require some kind of (bidirectional) message passing. In 
traditional concurrent logic programming languages, message passing is achieved by 
incrementally instantiating variables to lists [12], but we reject this method because: 

• It is more general than needed. For example, messages are allowed to contain vari-
ables, and variables may be incrementally bound to structures other than lists, such 
as trees. Moreover, stream communication is not even needed for workflow, be-
cause each activity is defined to receive only one message and send one reply. 

• In its general form, it requires shared memory, which is not available between a 
WFMS and participants. 

• All variables are potentially communication channels, so the language would need 
special unification or matching features that allow goals to suspend on variables. 

Another method which has been used is to add explicit “send” and “receive” mes-
sage primitives or Linda-like blackboard primitives. But these are more general than 
we need for workflow purposes, and sometimes have no declarative meaning. 
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Instead, in Workflow Prolog we introduce the concept of a workflow variable. This 
acts as an asynchronous bidirectional communication channel between a Workflow 
Prolog program and a workflow participant. A workflow variable contains: 

• Destination: the identity of the participant. 
• Message content: data to be sent to the participant. 
• Message time: absolute time when message was sent to the participant. 
• Reply content: data returned by the participant. 
• Reply time: absolute time when reply was sent by the participant. 

As usual in logic programming languages, workflow variables are single-
assignment: each component is set only once. The destination and message content 
are assigned by the Workflow Prolog program; the reply content is assigned by the 
participant; the message time and reply time are assigned by the implementation. This 
way, each workflow variable captures all available information about an activity. 

Implementation. No special unification or matching is needed in a Workflow Prolog 
implementation, because workflow variables are distinct from regular variables and 
are used only by suspendable predicates. For example, a workflow variable cannot be 
unified with another workflow variable or any term except an unbound variable. 

2.2   Remote Predicate Call 

In imperative languages, such as Ada, bidirectional message passing is sometimes 
achieved using a procedure call syntax, in a remote procedure call (RPC). Input pa-
rameters of a procedure call are sent in a message to a server and output parameters 
are taken from the reply when it is received. The RPC is usually synchronous: it re-
turns only after the reply is received. 

In Workflow Prolog, also for bidirectional communication, we introduce an asyn-
chronous form of RPC (remote predicate call): 

rpc(Dest,MC,WV) 

which creates a new workflow variable WV, sets the destination of WV to Dest, sets 
the message content of WV to MC, sends a message containing MC to Dest, and sets 
the message time of WV to the time at which the message was sent. The rpc goal suc-
ceeds immediately after sending the message. Later, when the participant replies, the 
reply content and reply time can be extracted from WV; see Sections 2.3 and 2.6. 

The rpc goal is used in Workflow Prolog to invoke an activity and pass data to it. 
To wait for the activity to be complete, and retrieve results from it, the program needs 
to wait for the reply from the participant on the workflow variable; see Section 2.3. 

An advantage of this method is that an rpc goal (representing an activity) has a 
declarative reading as a relation between the activity’s input and output data, and pos-
sibly their times. E.g., if M is assessing proposal P, rpc(M,P,WV) might mean 

(“M approves P” ∧ WV.reply=accept) ∨ 
(“M rejects P” ∧ WV.reply=reject). 

Program 1 shows part of an example to receive and check project proposals sub-
mitted by students. The query creates a process to solicit a proposal from a student 
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named zz1234 and have it checked by two “markers” named smith and jones. 
The rpc goal here represents an activity send_proposal (writing a proposal) per-
formed by participant zz1234. When zz1234 completes the activity, the proposal 
will be available as the reply on workflow variable P, for checking by the markers. 

:- proposal(zz1234,send_proposal,[smith,jones]). 

proposal(Student,Request,Markers) :- 
  rpc(Student,Request,P), 
  check(P,Student,Request,Markers). 

Program 1. Proposal/approval example 

Our workflow variables and asynchronous RPC are quite similar to the “futures” of 
Multilisp [14]: both are used to invoke a concurrent process and access its result later. 
Differences are that our language is logic-based and that our RPC is intended solely 
for workflow purposes, not for general parallel computation. 

Restrictions. In rpc(Dest,MC,WV), Dest and MC must be ground (variable-free) 
and WV an unbound variable. Because the effect of rpc is immediate, it is not allowed 
to appear in a context that might fail: it must appear at the Prolog top level (i.e., there 
must be no choicepoints) and it must not appear in a guard (see Section 2.3). 

Implementation. The exact form of a message is not prescribed, except that it must 
contain a unique activity identifier to enable a reply to be matched with the corre-
sponding workflow variable. Messages could be implemented by: 

• email for messages and replies; 
• email for messages with replies sent via a form on a web page; 
• for an automated participant (a program): invoke the specified program, with its 

input taken from the message content and its output placed in the reply content. 

2.3   Suspendable Goals and Guards 

Our remote predicate call is asynchronous, to allow activities to be active concur-
rently. Therefore, a program needs the ability to wait until an activity completes, and 
to get the results from it. To do this we introduce a special coroutining mechanism. 

In Workflow Prolog, goals only need to suspend on workflow variables, not regu-
lar variables. Moreover, instead of using features like Prolog’s freeze or when 
predicates to determine which variables to suspend on, we use guards [10], which are 
now a standard feature of concurrent programming languages: they were used in CSP 
[16] and introduced into logic programming by Clark and Gregory [5]. 

In Workflow Prolog, goals are executed sequentially from left to right with the ex-
ception of suspendable goals, which might suspend on workflow variables. A sus-
pendable goal is a goal for a suspendable predicate, which is either: 

• A built-in suspendable predicate: 

replycontent(WV,RC) 
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This goal suspends on workflow variable WV if it has no reply yet, and otherwise 
succeeds, unifying RC with the reply content of WV. (There are also some other 
built-in suspendable predicates, described in Section 2.6.) 

• A user-defined suspendable predicate. This is any predicate defined by clauses at 
least one of which has a non-empty guard. 

In general, a Workflow Prolog clause takes the form 

H :- G1,…,Gm : B1,…,Bn. 

where H is the head, G1,…,Gm is the guard and each Gi is a guard goal, B1,…,Bn is 
the body and each Bj a body goal. Any guard goal or body goal may or may not be 
suspendable. If a guard is empty (m = 0), the clause is written 

H :- B1,…,Bn. 

If all clauses have empty guards, the predicate for H is not suspendable, and a goal 
matching H is executed in the same way as Prolog. Otherwise, for a suspendable 
predicate, Workflow Prolog reduces a goal matching H to the body of one of the 
clauses. It searches for a clause to use by executing each clause’s guard in turn. Each 
guard may succeed, fail, or block (on a set of workflow variables). A guard executes 
from left to right, and blocks on a set of variables Vs if it reaches a suspendable goal 
that is blocked on Vs; this means that the guard cannot succeed or fail until at least 
one of the variables in Vs has a reply value. (Note that, if replycontent is the 
only suspendable goal used in guards, each guard will block on at most one variable.) 

If a successful guard is found, the H goal commits by reducing to the correspond-
ing body. If all guards fail, the goal fails. If no guard succeeds but one or more block, 
H suspends on the union of the sets of variables on which the guards are blocked. 

If a goal H suspends, on a set of workflow variables Vs, it is delayed until there is a 
reply on any one of these variables from the corresponding participant, and the com-
putation proceeds with the next goal to the right of H. The states of blocked guards 
are not saved: all work done in trying to reduce H will be repeated later when H is 
woken (see Section 2.4). This is one reason why side-effects are excluded from 
guards; another reason is that guards are expected to fail. 

Program 2 defines the check predicate used in Program 1. This is a suspendable 
predicate because its clauses contain guards. If check is called before a reply arrives 
on workflow variable P, the goal will suspend on P because both guards block on P. 
Otherwise, the guards will extract the content of the reply, Proposal, and check 
whether it is valid. If so, the approve stage will be performed; otherwise, the pro-
posal stage will be repeated, invoking a new send_proposal activity. (‘\+’ is 
Prolog’s negation operator.) 

check(P,Student,_,Markers) :- 
  replycontent(P,Proposal), valid(Proposal) : 
  approve(Proposal,Student,Markers). 
check(P,Student,Request,Markers) :- 
  replycontent(P,Proposal), \+ valid(Proposal) : 
  proposal(Student,Request,Markers). 

Program 2. Proposal/approval example (contd.) 



62 S. Gregory and M. Paschali 

Program 3 defines the approve predicate (not suspendable). Its rpc goals invoke 
two concurrent approve_proposal activities, one by each marker. The decide 
goal (suspendable) waits for the markers to reply. Initially, decide([R1,R2],…) 
suspends on both R1 and R2: its first two clauses block on R1 and its third clause 
blocks on R2. If both markers reply ‘ok’, the proposal is accepted (clause 1). If one 
marker replies with comments (clause 2 or 3), the comments and proposal are sent to 
the student to revise. In this case, the other marker’s reply is ignored. 

approve(Proposal,Student,Markers) :- 
  rpcs(Markers,approve_proposal(Proposal),Rs), 
  decide(Rs,Markers,Proposal,Student). 

rpcs([],_,[]). 
rpcs([Dest|Dests],Message,[WV|WVs]) :- 
  rpc(Dest,Message,WV), rpcs(Dests,Message,WVs). 

decide([R1,R2],_,Proposal,Student) :- 
  replycontent(R1,ok), replycontent(R2,ok) : 
  rpc(database,accepted(Student,Proposal),D), 
  replycontent(D,ok). 
decide([R1,_],[M1,M2],Proposal,Student) :- 
  replycontent(R1,c(C)) : 
  proposal(Student,revise(Proposal,C),[M1,M2]). 
decide([_,R2],[M1,M2],Proposal,Student) :- 
  replycontent(R2,c(C)) : 
  proposal(Student,revise(Proposal,C),[M1,M2]). 

Program 3. Proposal/approval example (contd.) 

Restrictions. All suspendable goals must be ground unless they appear in a guard, to 
avoid problems with dependent goals on the right. Suspendable guard goals need not 
be ground because, if they block, guard goals to their right are not executed. Suspend-
able goals must appear at the Prolog top level (i.e., there must be no choicepoints). 
This prevents premature commitment, in the case of a cut following a suspended goal. 

Implementation. A simple way to implement suspendable goals is by an interpreter 
that executes each guard until the goal commits or suspends. This approach is not too 
expensive because the interpreter is called only for suspendable goals and is very 
small: the guards themselves are not interpreted but are executed directly by Prolog, 
as are clause bodies. If no suspendable goals are used, the execution is almost the 
same as Prolog’s, and there is no overhead relative to it. 

One way to suspend a suspendable goal on a set of workflow variables would be to 
exploit the coroutining features provided in some Prolog systems, such as “attributed 
variables” [17, 15]. Each workflow variable would contain a pointer to the goals sus-
pended on it, and the other variables that each goal is suspended on. Another method 
(used in the prototype implementation) is to store workflow variables and suspended 
goals using Prolog’s record or assert. This is possible only because suspended 
goals are ground and workflow variables are used only by suspendable predicates  
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(e.g., they cannot be unified). If suspendable goals contained variables, these would 
be lost (renamed) on copying the goal to the database. Using attributed variables may 
not be an advantage in Workflow Prolog because of the need for persistence  
(Section 2.4): between the times of suspending a goal and waking it up, the whole 
structure needs to be saved to and restored from a file. 

2.4   Persistence and Waking Goals 

As described in Section 2.3, each top-level goal in a Workflow Prolog query may 
succeed, fail, or suspend. If a goal fails, the query fails. If all goals succeed, the query 
succeeds. If some goals suspend, the query terminates with goals suspended. Each 
suspended goal may be suspended on one or more workflow variables; each workflow 
variable may have one or more goals suspended on it. 

Goals are never woken up during a query, because it is impossible for a Workflow 
Prolog program to give a workflow variable a value. They are woken only when par-
ticipants reply on workflow variables as the result of completing an activity. Activi-
ties, and especially processes (comprising many activities) may take days, weeks, or 
even years to complete, so a Workflow Prolog program may run for a long time, 
spending most of its time suspended, waiting for participants to reply. Therefore, 
Workflow Prolog is based on persistent execution: when a query terminates, nor-
mally with suspended goals, the query’s state is saved in a file for later use. This  
includes: 

• all suspended goals; 
• the workflow variables on which each goal is suspended; 
• the goals that are suspended on each workflow variable; 
• the message time (for all workflow variables); 
• the reply content and reply time (for workflow variables that have been replied to). 

There are two important properties of the suspended goals that are saved in the 
state. First, because of the language restriction (Section 2.3), they contain no unbound 
variables, though they might (and normally do) contain workflow variables. Second, 
they are all suspendable goals from the top level of the query, not including suspend-
able guard goals or suspendable goals called from guards, because the state of 
blocked guards is never saved. 

When a participant replies on a workflow variable WV: 

• The state is read from the state file. 
• The reply content and reply time of WV are stored in the state. 
• The goals suspended on WV are removed from WV and all other workflow variables 

they are suspended on, and converted to a Prolog conjunction by appending them 
together in any order (because they are not dependent). 

• The woken conjunction is executed in the same way as the initial query. We call 
this a reply query. 

• The updated state is saved in the state file. 
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All of these steps are done mutually exclusively: if two participants reply about the 
same time, one will need to wait until the other has updated the state. 

This way, a Workflow Prolog query is solved in phases: first the initial query  
and then a reply query phase whenever a participant responds. Eventually the query 
may succeed or fail, whereupon the state file may be deleted. Naturally, if many 
queries are active at any time, they are independent and each have their own state  
file. 

Implementation. Workflow Prolog is a coroutining language, not a concurrent one: 
there is no need for a run queue, which concurrent systems normally use to store run-
nable threads that have been newly created, woken, or preempted.  This is because: 

• Each query, and reply query, is a Prolog conjunction, which is executed as a single 
thread. While executing, a query may spawn threads (each thread being a suspend-
able goal) but these are always suspended, not runnable; any suspendable goal that 
is runnable will be run in place by the query thread. 

• Suspended goals are never woken up during a query. 

Because there is no runnable queue, there can be no preemptive scheduling. There-
fore, the programmer is responsible for avoiding nonterminating goals, but this is no 
more onerous than in Prolog. Assuming no nonterminating goals, fairness is assured. 
This is because whenever a goal suspends, it will not be woken up again until all 
goals in the query have suspended or succeeded. 

2.5   Deep and Nested Guards 

A guard can be an arbitrary Prolog conjunction, excluding rpc goals and other goals 
with side-effects. In this sense, guards can be deep, as in the earliest concurrent logic 
programming languages [25]. (Later languages used flat guards — restricted to cer-
tain built-in predicates — for implementation reasons.) However, although guards 
may be deep, they should be kept small, because they are executed again from the be-
ginning whenever the parent goal is woken after being suspended. 

A very useful kind of deep guard is a nested guard: one that calls a user-defined 
suspendable goal that is itself defined by clauses with guards. These can be used for 
what Conlon [7] called “peeling or-parallelism”. Even without or-parallelism, nested 
guards are useful for expressing a disjunction between an arbitrary number of alterna-
tives. The suspension criteria for a goal are determined dynamically, which cannot be 
done with flat guards or the freeze or when predicates provided in some versions 
of Prolog. 

For example, the code in Program 1-3 works only for two markers, because of the 
definition of the decide predicate. To change the program to allow N markers, de-
cide would need to be rewritten to use N+1 clauses. A better solution is to general-
ize it to allow an arbitrary number of markers by exploiting nested guards, as shown 
in Program 4. The first clause of decide handles an ‘ok’ reply from all markers 
while the second clause handles comments from any marker. 
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decide(Rs,_,Proposal,Student) :- all_ok(Rs) : 
  rpc(database,accepted(Student,Proposal),D), 
  replycontent(D,ok). 
decide(Rs,Markers,Proposal,Student) :- 
  one_comment(Rs,C) : 
  proposal(Student,revise(Proposal,C),Markers). 

all_ok([]). 
all_ok([R|Rs]) :- replycontent(R,ok), all_ok(Rs). 

one_comment([R|_],C) :- replycontent(R,c(C)) : true. 
one_comment([_|Rs],C) :- one_comment(Rs,C) : true. 

Program 4. Nested guards 

2.6   Time Constraints 

Workflow Prolog handles time in a more declarative way than by simply assuming 
the existence of a “timer” activity. As mentioned above, each workflow variable has a 
message time and reply time. Each of these can be obtained, respectively, by: 

messagetime(WV,MT): This is not suspendable; it unifies MT with WV’s message 
time, assuming that WV is a workflow variable on which a message has been sent. 

replytime(WV,RT): This is suspendable: it suspends on workflow variable WV if 
it has no reply yet, and otherwise unifies RT with WV’s reply time. 

The final type of time predicate is the precedence constraint , T1<<T2, which al-
lows testing of a workflow variable’s reply time even before a reply has been re-
ceived. T1<<T2 is a suspendable goal. T1 and T2 must each be an absolute time or 
of the form replytime(WV) where WV is a workflow variable. The four forms of 
this constraint, where ATi is an absolute time and WVi a workflow variable, are: 

AT1 << AT2:  Succeeds if AT1 precedes AT2, fails otherwise. 

replytime(WV1) << replytime(WV2):  If both WV1 and WV2 have been re-
plied to, succeeds or fails, depending on their actual reply times. If neither has been 
replied to, suspends on both WV1 and WV2. If WV1 has been replied to but WV2 has 
not, succeeds. If WV2 has been replied to but WV1 has not, fails. 

replytime(WV) << AT:  If WV has been replied to, succeeds if WV’s actual reply 
time is earlier than AT, otherwise fails. If not, and the current time is later than AT, 
fails. Otherwise, suspends on both WV and time AT. 

AT << replytime(WV):  If WV has been replied to, succeeds if WV’s actual reply 
time is later than AT, otherwise fails. If not, and the current time is later than AT, 
succeeds. Otherwise, suspends on both WV and time AT. 

In general, a suspended goal may now be suspended on workflow variables and/or 
time events. Goals suspended on a time event are woken up any time soon after the 
corresponding time is reached (by a special process or thread, or operating system 
scheduler), in the same way as goals suspended on workflow variables are woken up. 
We call this a time query. 
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The precedence constraint can be used to implement a timeout. In Program 4, sup-
pose that each marker is required to respond within 24 hours; otherwise, the activity 
should be cancelled and the proposal sent to another marker for approval. Program 5 
shows a variant of the decide predicate that does this. The first two clauses handle 
replies by markers, as before. The new third clause handles the case where one 
marker has not replied before the deadline: it invokes a new approve_proposal 
activity and replaces the old activity’s workflow variable by the new one. 

decide(Rs,_,Proposal,Student) :- all_ok(Rs) : 
  rpc(database,accepted(Student,Proposal),D), 
  replycontent(D,ok). 
decide(Rs,Markers,Proposal,Student) :- 
  one_comment(Rs,C) : 
  proposal(Student,revise(Proposal,C),Markers). 
decide(Rs,Markers,Proposal,Student) :- 
  one_late(Rs,Rs1) : 
  choose(Markers,Marker), 
  rpc(Marker,approve_proposal(Proposal),R), 
  decide([R|Rs1],Markers,Proposal,Student). 

one_late([R|Rs],Rs) :- messagetime(R,T), 
  Deadline is T+86400, Deadline << replytime(R) : true. 
one_late([R|Rs],[R|Rs1]) :- one_late(Rs,Rs1) : true. 

Program 5. Implementing a timeout using time constraints 

Restrictions. A replytime(WV,RT) goal can only occur in a guard (unless RT is 
ground, which is unlikely), and must appear at the Prolog top level. T1<<T2 must be 
ground and must appear at the Prolog top level.  

Implementation. Time constraints can be implemented by, at regular intervals, re-
storing the state from the state file, finding time events that are earlier than the current 
time, executing goals that are suspended on them as a time query, and saving the up-
dated state. This could be done by a process that runs continuously or by using the 
operating system’s scheduler, such as the cron utility of Unix. 

2.7   Data Flow 

Although we have concentrated on control flow issues, the use of message passing via 
workflow variables also allows data to be transferred to and from activities (as the 
message and reply content). For real applications, this would not be a ground Prolog 
term, but might need to be a file: the WFMS would send to the participant the con-
tents of the file, not just a filename. Similarly, for a file appearing in the reply content, 
data would be received from the participant and stored in a local temporary file at the 
time of reply. This implies that Workflow Prolog’s persistent state (Section 2.4) may 
be extended to include a set of temporary files. 

2.8   Cancellation and Garbage Collection 

In WFMSs it is sometimes necessary to cancel activities after they have started. For 
example, in Program 1-3, an approve_proposal activity is invoked in two or 



 A Prolog-Based Language for Workflow Programming 67 

more markers at the same time: if one marker replies with comments, the activity in 
each of the other markers should be cancelled. 

It is easy to identify redundant activities: those whose workflow variable no longer 
appears in the suspended goals in the state. These are cancelled automatically by the 
garbage collector, which can also delete temporary files from the state (Section 2.7). 

The garbage collector (which could be run at the end of each query phase or per-
formed by a separate process that runs from time to time) identifies each workflow 
variable WV that appears in the state but is not referenced by the suspended goals, and: 

• If WV has not been replied to, the corresponding activity is cancelled. 
• If WV has been replied to, and the reply includes temporary files, these are deleted. 

To cancel an activity, for an automated participant, the process executing the activ-
ity is killed. In the case of a human participant, a cancellation message is sent. It is 
sufficient to include in the cancellation message only the identifier of the activity to 
be cancelled, though in practice these messages might be customized to include an 
explanatory comment. E.g., a cancellation message sent to markers might inform 
them that they need not approve the proposal sent earlier because it is now obsolete. 

It is conceivable that an activity should not be cancelled even if its result is not 
needed, e.g., if it has some permanent side-effect. In such cases, the programmer must 
make sure that the activity’s workflow variable always appears in the suspended 
goals, if necessary by adding a special replycontent goal for this purpose. 

2.9   Shared Workflow Variables 

In the above examples, each concurrent workflow “thread” comprised only a single 
activity, but in general a thread may contain a sequence of activities or be even more 
complex. In these cases, each thread is represented by a suspendable goal which 
monitors its progress. Sometimes it is necessary for threads to synchronize or com-
municate with each other. This can be done by having some workflow variables 
shared between the corresponding suspendable goals. Only one goal can send a mes-
sage (by rpc) on a workflow variable, but all goals can wait for its reply and access 
its value. To allow a workflow variable WV to be shared by several goals it must first 
be created, by a call to the wvar built-in predicate: 

wvar(WV) 

For example, consider a process in which candidates have to register for an exam 
before taking it, such that only one can take the exam at a time: the “exam” activities 
are mutually exclusive. Mutual exclusion can be implemented by inspecting the reply 
times of shared workflow variables. Program 6 is for the case of two candidates, a 
and b, but can easily be generalized. Each “candidate” thread accesses its own work-
flow variables and those of others; e.g., in cand(a,AR,BR,AE,BE), AR and AE 
represent a’s registration and exam activities and BR and BE represent b’s. After a 
candidate successfully registers for the exam, it waits until all those that registered 
earlier have completed the exam before taking the exam itself. The cand1 definition 
allows this candidate to take the exam if it has registered and the other candidate has 
completed the exam (clause 1) or if it registered earlier than the other did (clause 2). 
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:- wvar(AR), wvar(BR), wvar(AE), wvar(BE), 
   cand(a,AR,BR,AE,BE), cand(b,BR,AR,BE,AE). 

cand(Name,R,OR,E,OE) :- 
  rpc(register,Name,R), cand1(Name,R,OR,E,OE). 

cand1(Name,R,_,E,OE) :- 
  replytime(R) << replytime(E), 
  replytime(OE) << replytime(E) : 
  rpc(exam,Name,E), replycontent(E,done). 
cand1(Name,R,OR,E,_) :- replytime(R) << replytime(OR) : 
  rpc(exam,Name,E), replycontent(E,done). 

Program 6. Implementing mutual exclusion using shared workflow variables 

Restrictions. Like rpc, wvar must appear at the Prolog top level (i.e., there must be 
no choicepoints) and it must not appear in a guard. 

3   Workflow Patterns in Workflow Prolog 

In this section we describe the workflow patterns described in [1] and show how each 
can be implemented in Workflow Prolog, in an attempt to demonstrate its expressive 
power as a workflow language. Most of the patterns refer to the proposal/approval ex-
ample and programs of Section 2. 

Pattern 1: Sequence.  An activity is executed after completing another activity. Ex-
ample: an “approve proposal” activity is executed after a “send proposal” activity. 

To sequence two activities in Workflow Prolog, the first activity is invoked by an 
rpc goal, a suspendable goal waits for the reply on the first activity’s workflow vari-
able (by a clause’s guard) and the same clause’s body invokes the second activity by 
another rpc goal. See Programs 1-3. 

Pattern 2: Parallel Split.  A thread splits into two or more threads that are executed 
concurrently. Example: a “send proposal” activity enables the execution of the fol-
lowing activities “approve proposal” activity by all markers concurrently. 

In Workflow Prolog, concurrent activities are each invoked by an rpc goal, like 
the approve_proposal activities in Program 3. In general, multiple concurrent 
threads can be invoked in a similar way: as well as an rpc goal to invoke each activ-
ity, there is a suspendable goal suspended on each activity’s workflow variable, which 
invokes subsequent activities in the thread; an example of this appears in Program 6. 

Pattern 3: Synchronization.  A number of concurrent threads join together into a 
single thread. The following activity waits until all of the concurrent threads have 
completed. Example: an “accepted” activity may be enabled after the completion of 
“approve proposal” activities in all markers. 

In Workflow Prolog, a suspendable goal suspends on all of the workflow variables 
that indicate the end of each activity or thread. In Program 3, the decide goal has 
this role: it waits for the two approve_proposal activities to complete. 
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Pattern 4: Exclusive Choice.  One alternative branch is chosen to be executed. Ex-
ample: after the execution of an “approve proposal” activity by one or more markers, 
either an “accepted” activity by the database or a “revise” activity by the student is 
invoked, depending on the result of the “approve proposal” activity. 

In Workflow Prolog this is simply implemented using guards. If the choice be-
tween branches is to be made on the basis of the result of a workflow activity, the 
guard both waits for the activity to complete and tests its result, as in Program 3. 

Pattern 5: Simple Merge.  Two or more alternative branches join together without 
synchronization (because only one branch has been executed). Example: after one of 
the markers has rejected a proposal, the proposal must be revised by the student. 

The simplest way to implement this is to include the continuation code at the end 
of every branch. In Program 3, a proposal goal appears in both the second and 
third clauses for decide. This duplication is not a problem because, of course, the 
proposal predicate is defined only once. 

Pattern 6: Multi-choice.  A number of alternative branches exist such that one or 
more of them can be selected for execution. For example, in a process to assess dis-
sertations, an activity “assess dissertation” is executed by one marker or another, or 
both of them concurrently. 

Because of Workflow Prolog’s committed choice, this cannot be implemented with 
one clause for each alternative, like exclusive choice. It requires an extra clause for 
each combination of alternatives, or (more flexibly) it could be reformulated as a con-
junction, where each conjunct either executes an activity or not, depending on its own 
condition. This is straightforward to implement; we omit the code for space reasons. 

Pattern 7: Synchronizing Merge.  Two or more branches join together into a single 
thread. If more than one branch was active concurrently, these branches are synchro-
nized. Alternatively, if only one branch was chosen, no synchronization is needed. 
For example, after the execution of “assess dissertation” by one or both markers, an 
activity “store mark in database” is enabled. 

In Workflow Prolog, a suspendable goal can suspend on a variable number of 
workflow variables, each being the reply to one of the concurrent activities or threads 
invoked in a multi-choice construct. This allows the implementation of a form of syn-
chronizing merge, if not a fully general one. We omit the code for space reasons. 

Pattern 8: Multi-merge.  Two or more branches join together into a single one with-
out synchronization, such that if more than one branch is executed (concurrently), the 
activity that follows the merge is executed for every branch. For example, after the 
execution of “assess dissertation” by each marker, the activity “store mark in data-
base” is enabled for that marker’s mark only. 

Multi-merge can be implemented in Workflow Prolog as easily as synchronizing 
merge. Again, we omit the code, which is similar to that for the previous patterns. 

Pattern 9: Discriminator.  Two or more branches join together into one, such that 
when the first is completed the following activity is enabled. The program waits for 
the remaining branches (if any) to complete but then ignores them. Example: in  
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Section 2, a comment is required from one marker. Using a discriminator would still 
act on the first marker’s comment but would wait for responses from the other  
markers. 

A discriminator can be implemented in the same way as pattern 2 (parallel split) 
but with additional suspendable goals to wait for, and ignore, all but the first “branch” 
that completes. For example, the decide predicate of Program 4 is modified by add-
ing a conjunction of replycontent goals to the body of the second clause. 

Pattern 10: Arbitrary Cycles.  One or more activities can be executed repeatedly. 
Example: in Section  2, the “revise” and “approve proposal” activities may need to be 
executed several times before the “accepted” activity is executed. 

Cycles can be implemented by tail recursion. The result of an activity is tested in a 
clause guard; the recursive clause has a body that invokes a new activity and tests its 
result in a tail-recursive goal, like the proposal goal in decide in Program 3. 

Pattern 11: Implicit Termination.  If a subprocess ends (no activities are executed 
and none of them can be enabled) then the subprocess is terminated. In all the above 
examples, the processes should terminate when all activities are complete. 

Workflow Prolog programs terminate implicitly because, as in other logic pro-
gramming languages, there is no explicit “halt” instruction. 

Pattern 12: Multiple Instances without Synchronization.  Multiple instances of an 
activity are invoked that are independent, so there is no need to synchronize them. 

In Workflow Prolog, each rpc goal invokes a new activity and workflow variable; 
if these appear in different suspendable goals, or none, they are independent. 

Pattern 13: Multiple Instances with a priori Design Time Knowledge.  Multiple 
instances of an activity are generated which need to synchronize, such that another ac-
tivity starts when they all complete. The number of instances is known at design time. 

This is the same as patterns 2 and 3 (parallel split and synchronization), except that 
all threads are of the same type. Since we know the number of instances we can in-
clude in the program N copies of an rpc goal, invoking N activities, and N calls to 
replycontent in a clause guard to wait for them to complete, as in Program 1-3. 

Pattern 14: Multiple Instances with a priori Runtime Knowledge.  Multiple in-
stances of an activity are generated which need to synchronize, such that another ac-
tivity may start when they all complete. In this pattern the number of instances is not 
known at design time but is known before the instances are created. 

In Workflow Prolog this is implemented by a conjunction of rpc goals and re-
plycontent goals, the numbers of which are determined at runtime. For example, 
in Program 4, the list of markers may be arbitrarily long. 

Pattern 15: Multiple Instances without a priori Runtime Knowledge.  Multiple 
instances of an activity are generated which need to synchronize, such that another ac-
tivity may start when they all complete. In this pattern the number of instances is not 
known before the instances are created. New instances can be created even if some of 
the instances are still active or have already ended. 
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In Program 5, approve_proposal activities are invoked dynamically, depend-
ing on the outcome of the approve_proposal activities that are already active. 

Pattern 16: Deferred Choice.  One of several alternative branches is chosen to be 
executed. However, the choice is not made in advance, but depends on the environ-
ment. For example, in an exam process, a candidate has to register for an exam and 
then take the exam. Suppose there are two alternative exams he can take, and the 
choice is determined by which registration attempt succeeds first. 

In Workflow Prolog this is implemented by first invoking all of the activities, wait-
ing for one of them to complete, and then cancelling all others, using Workflow 
Prolog’s special garbage collection, as in Program 7. 

:- rpc(register1,Name,Reg1), rpc(register2,Name,Reg2), 
   cand(Name,Reg1,Reg2). 

cand(Name,Reg1,_) :- replycontent(Reg1,done) : 
  rpc(exam1,Name,Exam), replycontent(Exam,done). 
cand(Name,_,Reg2) :- replycontent(Reg2,done) : 
  rpc(exam2,Name,Exam), replycontent(Exam,done). 

Program 7. Pattern 16 (deferred choice) 

Pattern 16 is described as a state-based pattern in [1] because it involves testing 
conditions that become true temporarily; e.g., the register1 activity is enabled 
only until register2 succeeds. However, as van der Aalst et al. point out, the same 
effect can also be achieved with message passing, using “messages to cancel previous 
messages”; this is what Workflow Prolog does, automatically by garbage collection. 

Strictly speaking, redundant activities should be cancelled atomically when the re-
quired activity completes, but Workflow Prolog cannot do this, because of its asyn-
chronous message passing; it only guarantees that unneeded activities are eventually 
cancelled. This sometimes gives undesirable results; e.g., in Program 7 the candidate 
might end up registering for both exams. However, in other applications, e.g., Pro-
gram 1-3 and Program 8, our eventual form of cancellation is perfectly acceptable. 

Pattern 17: Interleaved Parallel Routing.  A number of activities are executed in an 
arbitrary order, decided at run time, like parallel split. The difference is that two ac-
tivities cannot be executed at the same time; i.e., mutual exclusion. 

This is described as a state-based pattern in [1] but, unlike pattern 16, it can be im-
plemented in Workflow Prolog without cancellation messages. Mutual exclusion can 
be implemented by using reply times of workflow variables, as shown in Program 6. 

Pattern 18: Milestone.  An activity may be enabled (temporarily) only if some thread 
has reached a certain point in its execution. For example, in an exam process, there 
could be a milestone between “register” and “exam” activities. An “eat” activity can 
be executed zero or more times between these two activities. 

Like deferred choice (pattern 16), this can be implemented in Workflow Prolog us-
ing cancellation messages (from garbage collection). A candidate first completes the 
register activity, and then tries to invoke both the exam and eat activities. If the 
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eat activity succeeds, the exam activity is cancelled and retried later. If the exam 
activity succeeds, the process terminates. We omit the program for space reasons. 

Pattern 19/20: Cancel Activity/Case.  An enabled activity is disabled. For example, 
in the proposal/approval example of Section 2, one “approve proposal” activity may 
be cancelled when the other completes. Pattern 20 cancels all activities in a process. 

In Workflow Prolog, activities are cancelled automatically by garbage collection. If 
a thread is waiting for the result of an activity, its suspended goal must be cancelled 
explicitly, by making it wake up and terminate; the activities will then be cancelled. 

Program 8 shows another example of cancellation. A query order(c,b) is in-
voked when customer c orders book b. It forwards the order to a warehouse activ-
ity and starts a cancel_order activity to be performed by the customer. When ei-
ther of these activities completes, the other is cancelled. This example highlights the 
need for customizable cancellation messages (Section 2.8). Starting the can-
cel_order activity involves sending a message like “Your order has been received; 
if you wish to cancel it, click here”, while cancelling this activity would send a mes-
sage such as “Your order has been despatched and cannot now be cancelled”. 

order(Customer,Book) :- 
  rpc(warehouse,order(Customer,Book),Despatch), 
  rpc(Customer,cancel_order(Book),Cancel), 
  order1(Despatch,Cancel). 

order1(Despatch,_) :- 
  replycontent(Despatch,done) :: true. 
order1(_,Cancel) :- 
  replycontent(Cancel,done) :: true. 

Program 8. Pattern 19/20 (cancellation) 

4   Conclusions 

4.1   Summary 

We have presented a new extension to Prolog that we believe is sufficiently expres-
sive for workflow applications but simple enough to implement efficiently and use. 

The rpc predicate is simple but neatly captures a workflow participant’s behav-
iour as a relation on a workflow variable. Garbage collection of workflow variables is 
fed back to the participant by cancelling activities. Coroutining using guards, espe-
cially nested guards, is more powerful than Prolog’s freeze or when predicates. 
Persistence is also essential, and time constraints provide a powerful and declarative 
way to express time. Implementation is simplified by restricting suspended goals to be 
ground and because goals are never woken up during a query. A Workflow Prolog 
process cannot interact with itself or another Workflow Prolog process, because it has 
no way to act as a server (to receive unsolicited requests), but this is because the lan-
guage is intended to coordinate workflow activities, not implement them. 

In the introduction we argued that concurrent logic programming languages were 
not well-suited to workflow programming. However, it should be easy to extend them 
by adding features similar to those that we have proposed (excluding guards, which 
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already exist). The main argument against such languages is that they are still rela-
tively obscure, and probably more powerful than needed for workflow purposes. 

We also claimed in the introduction that an (extended) logic programming lan-
guage should offer a high-level declarative way to develop WFMSs. It is worth con-
sidering whether our approach offers any advantage, for workflow programming, over 
extensions to other well-known general purpose languages. As with other application 
areas, it is notoriously hard to prove this, since it depends on the languages with 
which the user is familiar. However, we would point to the fact that a Workflow 
Prolog program can be a very readable declarative description of the workflow behav-
iour, especially because of the time constraints. 

A prototype implementation of Workflow Prolog has been developed in SWI-
Prolog. It includes all features described in this paper, with messages to participants 
displayed on screen and replies read from the keyboard. Garbage collection is cur-
rently implemented only on success or failure of the query. The Workflow Prolog im-
plementation is available from http://www.cs.bris.ac.uk/~steve/wp/. 

4.2   Related Work 

Bi and Zhao [3] use propositional logic to model workflow problems and present a 
method of verifying them. Concurrent (Constraint) Transaction Logic has been pro-
posed [9, 22] for specifying, verifying, and scheduling workflow problems. Pokorny 
and Ramakrishnan [21] argue that Generalized Linear Temporal Logic is more suit-
able than transaction logic because of its ability to express temporal and fairness 
properties. Ma [19] also proposes linear temporal logic for modelling workflow, ex-
tending it in [11] to allow a specification to change over time. Wang and Fan [26] 
propose the use of Lamport’s Temporal Logic of Actions (TLA) for modelling and 
analysing workflow, and use it to prove the absence of deadlock. 

The idea of extending an existing language, instead of developing a new one, for 
workflow applications was also proposed by Forst et al. [13]. Their approach uses a 
“coordination toolkit” that can be added to computation languages, including Prolog. 

The workflow patterns of van der Aalst et al. have received a lot of attention since 
they were published. As a recent example, they were used to evaluate the capabilities 
of the orchestration language Orc [8]; unlike Workflow Prolog, which is a practical 
programming language, Orc is a new process algebra. Coordination languages have 
also been applied to workflow recently by Omicini et al. [20]. 

Acknowledgements. We are grateful to the anonymous referees for some exception-
ally detailed and perceptive comments, which have helped improve the presentation 
of this paper. 
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Abstract. Our aim is to define the kernel of a simple and uniform programming
model—the reactor model—suitable for building and evolving internet-scale pro-
grams. A reactor consists of two principal components: mutable state, in the form
of a fixed collection of relations, and code, in the form of a fixed collection of
rules in the style of datalog. A reactor’s code is executed in response to an external
stimulus, which takes the form of an attempted update to the reactor’s state. As in
classical process calculi, the reactor model accommodates collections of distrib-
uted, concurrently executing processes. However, unlike classical process calculi,
our observable behaviors are sequences of states, rather than sequences of mes-
sages. Similarly, the interface to a reactor is simply its state, rather than a collec-
tion of message channels, ports, or methods. One novel feature of our model is the
ability to compose behaviors both synchronously and asynchronously. Also, our
use of datalog-style rules allows aspect-like composition of separately-specified
functional concerns in a natural way .

1 Introduction

In modern web applications, the traditional boundaries between browser-side presenta-
tion logic, server-side “business” logic, and logic for persistent data access and query
are rapidly blurring. This is particularly true for so-called web mash-ups, which bring a
variety of data sources and presentation components together in a browser, often using
asynchronous (“AJAX”) logic. Such applications must currently be programmed us-
ing an agglomeration of data access languages, server-side programming models, and
client-side scripting models; as a consequence, programs have to be entirely rewritten
or significantly updated to be shifted between tiers. The large variety of languages in-
volved also means that components do not compose well without painful amounts of
scaffolding. Our ultimate goal is thus to design a uniform programming language for
web applications, other human-driven distributed applications, and distributed business
processes or web services which can express application logic, user interaction, and ap-
plication logic using the same basic programming constructs. Ideally, such a language
should also simplify composition, evolution, and maintenance of distributed applica-
tions. In this paper, we define a kernel programming model which is intended to address
these issues and serve as a foundation for future work on programming languages for
internet applications.
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The reactor model is a synthesis and extension of key ideas from three linguistic
foundations: synchronous languages [2, 4, 7], datalog [15], and the actor model [1].
From datalog, we get an expressive, declarative, and readily composable language for
data query. From synchronous languages, we get a well-defined notion of "event" and
atomic event handling. From actors, we get a simple model for dynamic creation of
processes and asynchronous process interaction.

A reactor consists of two principal components: mutable state, in the form of a fixed
collection of relations, and code, in the form of a fixed collection of rules in the style
of datalog [15]. A reactor’s code is executed in response to an external stimulus, which
takes the form of an attempted update to the reactor’s state. When a stimulus occurs, the
reactor’s rules are applied concurrently and atomically in a reaction to yield a response
state, which becomes the initial state for the next reaction. In addition to determining
the response state, evaluation of rules in a reaction may spawn new reactors, or generate
new stimuli for the currently executing reactor or for other reactors. Importantly, newly-
generated stimuli are processed asynchronously, in later reactions. However, we provide
a simple mechanism to allow collections of reactors to react together as a unit when
appropriate, thus providing a form of distributed atomic transaction.

As in classical process calculi, e.g., pi [12], the reactor model accommodates collec-
tions of distributed, concurrently executing processes. However, unlike classical process
calculi, our observable behaviors are sequences of states, rather than sequences of mes-
sages. Similarly, the interface to a reactor is simply its state (“REST” style [6]), rather
than a collection of message channels, ports, or methods. We accommodate information
hiding by preventing certain relations in a reactor’s state from being externally accessi-
ble, and by allowing the public relations to serve as abstractions of more detailed private
state (as in database views). A significant advantage of using data as the interface to a
component, and datalog as a basis for defining program logic, is that the combination is
highly “declarative”: it allows separately-specified state updates (written as rules) to be
composed with minimal concern for control- and data-dependence or evaluation order.

Contributions. We believe that the reactor model is unique in combining the following
attributes harmoniously in a single language: (1) data, rather than ports or channels
as the interface to a component; (2) synchronous and asynchronous interaction in the
same model, with the ability to generate processes dynamically; (3) expressive data
query and transformation constructs; (4) the ability to specify constraints/assertions as a
natural part of the core language; (5) distributed atomic transactions; and (6) declarative,
compositional specification of functionality in an “aspect-like” manner.

2 Reactor Basics

A reactor consists of a collection of relations and rules, which together constitute a
reactive, atomic, stateful unit of distribution. The full reactor syntax is given in Fig. 2.

Consider the declaration for OrderEntryA in Fig. 1. OrderEntryA defines a
class of reactors that are intended to log orders—say, for an on-line catalog application.
Reactor instances are created dynamically, using a mechanism we will describe shortly.
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def OrderEntryA = {
(* orders: id, itemid, qty *)
public orders: (int, int, int).
(* log: id, itemid, qty *)
log: (int, int, int).

log(id, itemid, qty) <-
orders(id, itemid, qty).

}

def OrderEntryA’ = {
(* ... same as OrderEntryA ... *)

not log(id, itemid, qty) <-
not orders(id, itemid, qty).

}

def OrderEntryB = {
(* ... same as OrderEntryA ... *)

(* orderIsNew is true if order has
not previously been logged *)

ephemeral orderIsNew: ().
orderIsNew() <-

orders(id, itemid, qty),
not -log(id, itemid, qty)

}

def OrderEntryC = {
(* ... same as OrderEntryB ... *)

(* delete any new order whose id is
duplicate of a prev. logged id *)

not orders(id, itemid, qty) <-
^orders(id, itemid, qty),
not -log(id, itemid, qty),
-log(id, _, _).

}

Fig. 1. Order entry: variations

Relations. The state of a reactor is embodied in a fixed collection of persistent relations.
Relations are sets of (τ1, ..., τn) tuples, where each τi is one of the types int, string,
enum-type-name, or ref reactor-type-name. The primitive types have the usual mean-
ings. Enumerations introduce a new type ranging over a finite set of constants. Reactor
references, of the form ref reactor-type-name, are described in Section 4. Relations are
empty when a reactor is instantiated. In addition to persistent relations, whose values
persist between reactions, a reactor can declare ephemeral relations. These relations can
be written and read in the same manner as persistent relations, but they are re-initialized
with every reaction.

In the case of OrderEntryA, its state consists of two persistent relations, orders
and log, each of which is a collection of 3-tuples of integer values. Relation orders
has access annotationpublic, which means that the contents of ordersmay be read
or updated by any client. By “update”, we simply mean that tuples may be added to or
deleted from orders; no other form of update is possible. Relation log, lacking any
access annotation, is private, the default, and may thus only be read or updated by the
reactor that contains log.

REACTOR ::= def reactor-type-name = { {DECL .}* }
ENUM ::= enum enum-type-name = { {atom-name ,}+ }
DECL ::= ( RELATION-DECL | RULE-DECL ) .

RELATION-DECL ::= [public | public write | publiac read] [ephemeral] rel-name : ( {TYPE ,}* )
RULE-DECL ::= HEAD-CLAUSE <- BODY

BODY ::= {BODY-CLAUSE ,}+
HEAD-CLAUSE ::= [not] [var-name.]rel-name[ˆ] ( {(_ | var-name | new reactor-name) ,}* )
BODY-CLAUSE ::= [not] [var-name.][ˆ|-]rel-name ( {(_ | var-name) ,}* ) | BASIC-PREDICATE

BASIC-PREDICATE ::= EXP (< | > | <> | =) EXP

TYPE ::= int | string | enum-type-name | ref reactor-type-name
EXP ::= var-name | NUMERIC-LITERAL | STRING-LITERAL | EXP (+ | - | * | / | %) EXP | self

Fig. 2. Reactor syntax
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The reaction process. A reaction begins when a reactor receives an update bundle
from an external source. An update bundle is a total map from the set of relations of the
recipient to pairs of sets (Δ+, Δ−), where Δ+ and Δ− are sets of tuples to be added
and deleted, respectively, from the target relation, and Δ+ ∩Δ− = ∅. An update bundle
should contain at least one non-empty set, i.e. completely empty update bundles are not
well-formed. In the examples that follow, an update bundle will typically contain an
update to a single relation, usually adding or deleting only a single tuple. However, an
update bundle can in general update any of the public relations of a reactor, and add and
delete arbitrary number of tuples at a time.

The state of a reactor before an update bundle is received is called its pre-state. A
reaction begins when an update bundle is applied atomically to the pre-state of a reactor,
yielding its stimulus state. The stimulus state of a reaction is (conceptually) a copy of
each relation of the reactor with the corresponding updates from the update bundle
applied. So, for example, in the case of OrderEntryA, if relation orders contained
the single tuple (0, 1234, 3) prior to a reaction, and a reaction is initiated by applying
an update bundle with Δ+ = {(1, 5667, 2)} and Δ− = ∅, then the stimulus value of
orders at the beginning of the reaction will be the relation {(0, 1234, 3), (1, 5667, 2)}.
We will refer to the “value of relation r in the stimulus state” and “the stimulus value
of r” interchangeably.

If a reactor contains no rules, the state of its relations at the end of a reaction—its
response state—is the same as the stimulus state, and the reaction stores the stimulus
values back to the corresponding persistent relations. Hence in its simplest form, a reac-
tion is simply a state update. However, most interesting reactors have one or more rules
which compute a response state distinct from the reactor’s stimulus state (Section 3).
Rule evaluation can also define sets of additions and deletions to/from the future state of
either local relations or—via reactor references—relations of other reactors. These sets
form the update bundles—one bundle per reactor instance referenced in a reaction—that
initiate subsequent reactions in the same or other reactors. Update bundles thus play a
role similar to messages in message-passing models of asynchronous computation.

It is important to note that from the point of view of an external observer, a reaction
occurs atomically, that is, no intermediate states of the evaluation process are exter-
nally observable, and no additional update bundles may be applied to a reactor until the
current reaction is complete.

Fig. 3 illustrates the life cycle of a typical collection of reactors, both from the point
of view of an external observer (the top half of the figure) and internally (the bottom
half of the figure schematically depicts reactor M during reaction i). The pre-state of
reactor M during reaction i is labeled -Si, its stimulus state is labeled ^Si, its future
state is labeled S^i, and its response state is labeled Si. The terms pre-state, stimulus
state, response state, and future state are meaningful only relative to a particular reac-
tion, because one reaction’s response state becomes the next reaction’s pre-state, and
references to a reactor’s future state are used (along with the pre-state) to define the
stimulus state for a subsequent reaction. The only “true” state, which persists between
reactions, is the response state. An external observer therefore sees only a sequence of
response states (more specifically, the response values of public relations). Each rule of
a reactor can refer programmatically to relation values in all four states: it can read the
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pre-state of a relation (schematically depicted as -r in Fig. 3), the stimulus state (^r),
and the response state (r); it can write the response state and the future state (r^).

3 Rules

Basic rule evaluation. Reactor rules (Fig. 2) are written in the style of datalog [15, 14].
The single rule of OrderEntryA can be read as “ensure that log contains whatever
tuples are in orders”. The right-hand side, or body of a reactor rule consists of one
or more body clauses. In OrderEntryA, there is only one body clause, a match pred-
icate of the form orders(id, itemid, qty). A match predicate is a pattern
which binds instances of elements of tuples in the relation named by the pattern (here,
orders) to variables (here, id, itemid, and qty). As usual, we use ‘_’ to repre-
sent a unique, anonymous variable. Evaluation of the rule causes the body clause to be
matched to each tuple of orders and binds variables to corresponding tuple elements.
Since the head clause on the left side of the rule contains the same variables as the body
clause, it ensures that log will contain every tuple in orders.

In general, a RULE-DECL can be read “for every combination of tuples that satisfy
BODY, ensure that the HEAD-CLAUSE is satisfied” (by adding or deleting tuples to the
relation in HEAD-CLAUSE). The semantics of datalog rule evaluation ensures that no
change is made to any relation unless necessary to satisfy a rule, and—for our chosen
semantics—that rule evaluation yields a unique fixpoint result in which all rules are
satisfied. Although our rule evaluation semantics is consistent with standard datalog
semantics, we have made several significant extensions, including head negation, refer-
ence creation, and the ability to refer to remote reactor relations via reactor references.

Returning to reactor OrderEntryA, let us consider the case where the pre-state
values of orders and log are, respectively, {(0, 1234, 3)} and{(0, 1234, 3)}, and
an update bundle has Δ+ = {(1, 5667, 2)} and Δ− = ∅. Then the stimulus value
of orders will be equal to {(0, 1234, 3), (1, 5667, 2)}. No rule affects the value of
orders, so the response value of orders will be the same as the stimulus value. In
the case of log, rule evaluation yields the response state {(0, 1234, 3), (1, 5667, 2)},
i.e., the least change to log consistent with the rule.

Now, starting with the result of the previous OrderEntryA reaction described
above, consider the effect of applying another update bundle such that Δ+ =
∅ and Δ− = {(0, 1234, 3)}. This reaction will begin by deleting (0, 1234, 3)
from orders, yielding the stimulus state orders = {(1, 5667, 2)},log =
{(0, 1234, 3), (1, 5667, 2)}. Evaluating the rule after the deletion has no net effect on
log (since the only remaining tuple in orders is already in log), hence we get the
response state orders = {(0, 1234, 3)} and log = {(0, 1234, 3), (1, 5667, 2)}. We
thus see that the effect of this rule is to ensure that log contains every orderid ever seen
in orders. If we wanted to ensure that log is maintained as an exact copy of the cur-
rent value of orders (which would mean that it is no longer a log at all), we could add
the additional negative rule depicted in definition OrderEntryA’ in Fig. 1. The neg-
ative rule of OrderEntryA’ has the effect of ensuring that if an orderid is not present
in orders, it will also be absent from log; i.e., it encodes tuple deletion. While nega-
tion is commonly allowed in body clauses for most datalog dialects, negation on the
head of a rule is much less common (though not unheard of, see, e.g., [16]).
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Fig. 3. Reaction schematic

Pre-state value and stimulus values of relations. Reactor definitions OrderEntryB
and OrderEntryC of Fig. 1 add additional rules that further refine the behavior of
OrderEntryA, using references to both pre-state and stimulus values of relations.
OrderEntryB defines an ephemeral nullary relation orderIsNew, which functions
as a boolean variable, initially false. The new rule in OrderEntryB sets orderIs-
New to true (i.e., adds a nullary tuple) if orders contains a value not found in log
prior to the reaction (i.e., in log’s pre-state value). The definition of OrderEntryC
further refines OrderEntryB by causing any new order whose orderid is a duplicate
of a previously logged orderid to be deleted. The new rule in OrderEntryC must
distinguish the stimulus value of orders, i.e., ^orders from its response value, i.e.,
orders, since the rule defines the response value to be something different from the
stimulus value in the case where a duplicate order id is present.

It is important to note that the result of rule evaluation is oblivious to the order
in which rules are declared. We believe this feature makes it much easier to update
the functionality of a reactor by changing the rule set without concern for control- or
data-dependencies. We see this feature demonstrated in the progression of examples
depicted in Fig. 1, where rules can be mixed and matched liberally to yield updated
functionality. Thus rules allow orthogonal functional “concerns” to be specified in an
aspect-like fashion [10].

Initialization, constants, and reaction failure. Consider the pair of rules r(x) <-
s(x) and not r(x) <- s(x). These rules are inherently contradictory, since they
require that x be both present and absent from relation r. In such cases, a conflict re-
sults. Because rules are conditionally evaluated, conflicts cannot in general be detected
statically and must be detected during rule evaluation. If such a conflict occurs, the re-
action fails: the reactor rolls back to its pre-state and no update bundles are dispatched.

Consider the reactor definition Cell depicted in Fig. 4. Each instance of a Cell is
intended to hold exactly one value. Instances of Cell contain two relations: a public
unary relation val containing the publicly-accessible value of the cell, and a private
nullary (i.e., boolean) relation live. Recall that a reactor’s relations are initially empty
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def Cell = {
public val:(int).
live:().

(* initializations *)
(*1*) live() <- .
(*2*) val(0) <- not -live().

(* singleton constraint: if not
satisfied, reaction fails;
reactor rolls back *)

(*3*) not live() <-
val(x), val(y), x <> y.

}

Fig. 4. Cell

when the reactor is instantiated. Rules (1) and (2) together define an idiom which will
allow us to initialize relations to non-empty values. First, consider rule (1). Rule (1) is an
unconditional rule, and is an instance of the shorthand notation depicted in Fig. 5(b).
Rule (1) defines live to be a a constant, since its response value evaluates to non-
empty (i.e., “true”) at the end of every reaction. Because of rule (1), -live in rule (2)
is nonempty only during the first reaction in which the Cell is instantiated. Hence val
will be initialized to 0 only once, in the reaction in which Cell is created. Thereafter,
-live will be non-null, and the initialization will not recur, allowing val to be freely
updated to arbitrary values.

Finally, consider rule (3) of Cell. The three clauses in its body collectively check
to see whether val contains more than one value, i.e., whether it is a singleton. If not,
the rule requires that its goal clause (left-hand side) be satisfied, i.e., that live be set
to empty (false). However, any such attempt is inconsistent with the assertion in rule (1)
that live is non-empty (true), hence any attempt to update Cell without maintaining
the singleton invariant will result in a conflict and reaction failure. We thus see that the
reactor model allows “assertions” and “integrity constraints” in the style of databases to
be expressed in precisely the same form as rules that express state updates. When some
assertion fails, the reaction rolls back. Fig. 5(d) depicts a notational convention that will
allow us to use FAIL to define rules that represent assertions.

4 Asynchronous Reactor Composition

Up to this point, we have not explained how update bundles are generated, only how
reactors react when an update bundle is applied. In this section, we show how updates
are generated, and explain how this is intimately connected to asynchronous interaction.

Single-reactor asynchrony. Consider the reactor definition Fibonacci in Fig. 6,
which computes successive values of a Fibonacci series. The relation series con-
tains pairs whose first element is the ordinal position of the sequence value, and whose
second element is the corresponding value of the sequence. The value of series is ini-
tialized using notational conventions (e) and (f) of Fig. 5. To compute the next element
of the series, we need to first identify the last two elements of the series computed thus
far. Universal quantification is required to determine the maximum element of a series;
however, the body of a datalog rule can essentially encode only existential properties.
To compute universal properties, we typically require auxiliary relations, thus, e.g., in
Fibonacci, we use the ephemeral relation notLargest to contain all the indices
of elements of series which are less than the maximum index.
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Notation Translation Comments

a r1(exp0) <- . . . ri(expi) . . . . r1(x0) <- . . . ri(xi) . . . ,
x0 = exp0, . . . ,
xi = expi.

Expressions expi are instances of non-
terminal EXP in Fig. 2; the xi are fresh
variables.

b head <- . head <- 0 = 0.
c r(x1, . . . xn) := body. r(x1, . . . xn) <- body.

not r(x1’, . . . xn’) <- body,
-r(x1’, . . . xn’), x1’ <> x1.

. . .
not r(x1’, . . . xn’) <- body,

-r(x1’, . . . xn’), xn’ <> xn.
d FAIL <- . . . . not live() <- . . . . Assumes the following definitions exist:

live: ().
live() <- not -live().

e body0:{
head1 <- body1.· · ·
headn <- bodyn.

}

head1 <- body1, body0.· · ·
headn <- bodyn, body0.

f INIT not -live() Assumes same definitions as (d).
g head1, · · · , headn <- body. head1 <- body.

· · ·
headn <- body.

Fig. 5. Notational conventions

def Fibonacci = {
(* complete series thus far: 1st elt.

is index, 2nd elt. is value *)
public read series: (int, int).
(* must be true for reactor to run *)
public write run: ().
(* holds indices in the sequence

less than the maximum *)
ephemeral notLargest: (int).

INIT: {
series(1,0), series(2,1) <- .
run() <- .

}

(* indices in series less than max *)
(*1*) notLargest(n) <- series(n, _),

series(n’, _), n’ > n.

(* compute next series value *)
(*2*) series^(n, x1+x2) <-

not notLargest(n),
series(n-1, x1),

series(n, x2).

(* halts if "run" set to false *)
(*3*) FAIL <- not -run(), not ^run().

}

Fig. 6. Self-Reacting Fibonacci

Note that the relation in the head of rule (2) computing the next value of the Fi-
bonacci sequence has the form series^. A relation name of this form refers to the
future state of the relation. The future state defines the contents of an update bundle
which is processed after the current reaction ends, in a subsequent reaction. One can
thus think of the future value of a relation as defining an asynchronous update or dis-
patching a “message”. As a result, successive values of the series are separately visible
to external observers as they are added to the list. Rule (3) results in failure if both the
pre-state and the stimulus values of run are false, thus preventing further updates to the
series from being generated. Instances of Fibonacci can react to two distinct classes
of update bundles: “internally” generated update bundles containing only new values
of the series, and client-generated update bundles which only affect the value of run.
A client cannot update series since series is not public. The Fibonacci reac-
tor does not produce update bundles affecting the value of run, since it has no rules
referring to the future value of run.
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In general, distinct reactors operate concurrently and independently. Given this fact,
it is possible for an update bundle to be generated by a client attempting to update the
value of run while a previous reaction by the same instance is in progress. Since re-
actions take place atomically, we must enqueue pending client updates until the current
reaction is complete. To this end, every reactor has an associated inbox queue containing
a multiset of pending update bundles. When a reaction is complete, the reactor checks
for a new update bundle in the queue. If it exists, the reactor dequeues it and uses it to
initiate a reaction. If no update bundle is present, the reactor performs no further com-
putation until a new update arrives. We make no assumptions about the order in which
inbox items are processed, except that they must be processed fairly. Fig. 3 illustrates
this process.

Reactor references and multi-reactor asynchrony. Until now, our examples have
only considered a single reactor type. Consider now the definitions for reactors Sam-
ple, Sensor, and Nonce depicted in Fig. 7. Reactor types Sample and Sensor

def Sample = {
(* rSensor: ref. to sensor; assumed

to be initialized by client *)
public rSensor: (ref Sensor).
(* samples collected thus far; nonces

distinguish sample instances *)
public log: (ref Nonce, int).
(* pulse: set to collect sample *)
public write ephemeral pulse: ().
(* response: holds sensor response *)
public write ephemeral response:

(int).

(* request sample when pulse set *)
(*1*) s.req^(self) <-

pulse(), rSensor(s).

(* process response:
add sample to log *)

(*2*) log(new Nonce, r) <-
response(r).

}

def Sensor = {
(* set when sample is to

be collected; value is ref.
to sample reactor *)

public write ephemeral req:
(ref Sample).

(* val: current sensor value *)
public val:(int).

(* send resp. when client sets req *)
r.response^(v) <- val(v), req(r).

(* sensor value is a singleton *)
FAIL <- val(x), val(y), x <> y.

}

def Nonce = {}

Fig. 7. Asynchronous query/response

encode a “classical” asynchronous request/response interaction. To enable two reactor
instances to communicate, we use reactor references such as those stored in relation
rSensor. Rule (1) of Sample has the effect of dispatching an asynchronous request
for the sensor value (maintained a Sensor reactor) whenever a client of Sample
updates pulse. The expression s.req^(self) in Rule (1) contains an indirect ref-
erence to relation rSensor: after the reactor reference stored in relation rSensor
is bound to variable s, we refer to relation req of the sensor instance indirectly using
the expression s.req. Since we refer to the future value of s.req, an asynchronous
update bundle is dispatched to the Sensor instance. The update bundle contains a
self-reference to the requesting Sample instance, which is generated by the self
construct.
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A Sensor instance responds to a request (in the form of an update to relation req)
by dispatching the current value of the sensor back to the corresponding Sample in-
stance. It does so by by setting the Sample’s response relation via the reactor refer-
ence sent by the requester. The response is asynchronous, since r.response^ refers
to a future value. The requester processes the response from the Sensor instance by
updating its log relation with the value of the response.

There are two ways of introducing references to reactors. The keyword self eval-
uates to a reference to the enclosing reactor. An expression of the form new reactor-
type-name instantiates a new instance of the given reactor type. Instantiation expres-
sions may only appear in the head of a rule. Rule (2) of Sample creates instances of
the trivial reactor Nonce. A reactor reference is globally unique, hence trivial reactors
such as Nonce can be used as sources of keys for relations. In particular, Sample uses
instances of Nonce to distinguish multiple instances of the same sensor value. While
Nonces contain no rules, in general, when a reactor is instantiated in a reaction, its rules
are evaluated along with the rules of the parent reactor, as we shall see in Section 5.

In order to instantiate and connect Sample and Sensor instances together, another
reactor must contain rules of the form s.rSensor(new Sensor) <- theSam-
pler(s) and theSampler(new Sample) <- . A request-response cycle be-
tween Sample and Sensor instances requires three distinct reactions: the reaction
in which a Sample client sets pulse (which dispatches the request to the sensor),
the reaction in which the sensor responds to the request, and the reaction in which the
requester updates the value of log.

5 Synchronous Reactor Composition

In the example in Fig. 8, an instance of MiniBank receives asynchronous requests to
transfer money between accounts. As with the example in Fig. 7, we use references to
“plumb” the reactors together. However, unlike the previous example, the remote refer-
ences in Fig. 8 refer to response values of relations, not future values. This means that
if a reaction is initiated by an update bundle containing a new req tuple at an instance
of MiniBank, the scope of the reaction will extrude to include both of the account
reactors (referred to by variables to and from, respectively). This results in a compos-
ite, synchronous, atomic reaction involving three reactor instances. Scope extrusion is

def Acct = {
(* account balance *)
public balance: (int).

(* balance is a singleton *)
FAIL <-

balance(x), balance(y), x <> y.

(* negative balances not allowed *)
FAIL <- balance(x), x < 0.

}

def Minibank = {
(* transfer request:transfer amount,

to account, from accout *)
public write ephemeral transferReq:

(int, ref Acct, ref Acct).

to.balance(x+amt) :=
^transferReq(amt, to, _).

from.balance(y-amt) :=
^transferReq(amt, _, from).

}

Fig. 8. Classic Transaction
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an inherently dynamic process, similar to a distributed transaction—see Section 6 for
details. MiniBank uses the notation of Fig. 5(c) to define “assignments” to singleton
relations.

Note that the rules in Acct encode constraints on the allowable values of balance.
In a composite reaction, all of the rules of all of the involved reactors must be satisfiable
in order for the reaction to succeed. If any of the rules fails, the composite reaction fails,
and all of the reactors revert to their pre-reaction states. A composite reaction is always
initiated at a single reactor instance at which some asynchronously-generated update
bundle is processed—in the case of the example in Fig. 8, reactor instance MiniBank.

The example in Fig. 9 shows how multiple user interface components can be instan-
tiated dynamically based on the current contents of an associated database. This mimics
the process of building dynamic, data-driven user interface components. The basic idea
of DataDisplay is that a button and an output field are generated for each item in a
database. ButtonWidget and OutputWidget are reusable user interface compo-
nents representing the button and output field generated for each item in relation db.
The buttons thus generated are “active”: pushing them causes the associated data to be
updated, which in turn results in updates to the UI. For example, rule (8) “wires” to-
gether corresponding button and database items such that when a button is pressed, the
corresponding data item is decremented. Rule (7) sets the value of the output field to the
value of the quantity currently maintained in the database. The rules for newly-created
reactors are evaluated as part of the “parent” reactor that created them.

6 Synchronous Reactions: Scope Extrusion and Locking Details

Scope Extrusion. In response to an update bundle, a reactor evaluates all its rules and
while doing so it may extrude the scope of the reaction to include other reactors. Ex-
trusion can happen in two ways: First, when a new reactor is instantiated it is included
in the scope of the reaction that caused it to be instantiated. Second, when the response
state of any relation (local or remote) is written, the reactor that contains that relation
and all reactors containing rules reading that relation are included in the scope of the
ongoing reaction. We say a relation is written whenever a rule produces a response-state
update for that relation regardless if this results in a state change or not (e.g. adding an
tuple that already exists constitutes a write). One important exception is the passive
read. A passive read is a read from the pre-state of a remote relation. It differs from
other remote reads in that writes to the remote relation in itself will not cause the reac-
tion to extrude to the reader.

A reaction is complete when all reactors included in the reaction have reached a state
that satisfies their rules. If one or more involved reactors cannot reach a state that sat-
isfies their rules, there has been a conflict and all involved reactors roll back to their
pre-state, i.e. the state they were in before the update bundle occurred or before they
were included in the reaction. If different reactors involved in the same composite reac-
tion separately define future values for relations of the same target reactor instance, the
updates are combined into a single update bundle, which will be dispatched at the end
of the composite reaction to the target reactor. In case the reaction rolls back, no update
bundles are produced. In this sense, from the point of view of an external observer, a
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def ButtonWidget = {
public label: (string).
public write ephemeral pressed: ().

}

def OutputWidget = {
public label: (string).
public val: (string).

}

def DataDisplay = {
(* database: itemid, quantity *)
public db: (int, int).

(* list of button / output widget
pairs,indexed by itemid *)

widgets: (int, ref ButtonWidget,
ref OutputWidget).

(* labels of widgets are constants *)
(*1*) o.label("Inventory: ") <-

widgets(_, _, o).
(*2*) b.label("Click to decr") <-

widgets(_, b, _).

(* projection of relns. on itemids *)
ephemeral oldDisplayItems: (int).
ephemeral currDbItems: (int).

(*3*) oldDisplayItems(i) <-
-widgets(i, _, _).

(*4*) currDbtems(i) <- db(i, _).

(* create new child widgets when new
item added to db *)

(*5*) widgets(i, new ButtonWidget,
new OutputWidget) <-

db(i, _),
not oldDisplayItems(i).

(* delete widgets if corresp. items
removed from db *)

(*6*) not widgets(i, _, _) <-
-widgets(i, _, _),
not currDbItems(i).

(* output val set to qty of
corresp. item *)

{*7*) o.val(toString(q)) :=
widgets(i, _, o), db(i, q).

(* button decrements qty. of
corresp. item *)

(*8*) db(i, q-1) :=
widgets(i, b, _),
b.pressed().

}

Fig. 9. Data-Driven UI

composite reaction has the same atomicity properties as a reaction involving a single
reactor. If a reaction updates the future state of (local or remote relations in) reactors
C1, . . . , Cn, it produces n different update bundles—one per target reactor—and each
Ci will have a separate and independent reaction to its own update bundle. Even if the
scope of Ci’s reaction should happen to expand to include some other Cj , Cj’s update
bundle will not be processed (or even visible) in that reaction.

Locking. Conceptually a rule reads all relations that appear in the body as well as any
relation that appears in negated form in the head. Thus a rule’s need for read access can
be determined statically. Whether a rule will write the head relation when evaluated can
generally only be determined at runtime, because the read has to match a non-empty
set of facts that satisfy the body for a write to occur1. For this reason we will use the
term read to refer to the static property, regardless of any optimization that might avoid
unnecessary reads. The term write, on the other hand, will be strictly reserved for the
dynamic property, i.e. a head relation is considered to be written only if the body yields
at least one match when evaluated.

When a reaction extends to include several reactors, the composite reaction should
remain atomic. The following locking conventions ensure this property. A reactor locks
when it agrees to react to an update bundle and remains locked for the duration of the
reaction until either a quiescent response state is found and committed or a conflict
causes the reactor to roll back to its pre-state. When a reactor is locked, it denies any

1 When a tuple t is present in a relation r, we say that r t is a fact.
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{ -R = ^R = R }
quiescent

{ -R = ^R = R }
read locked on r

{ }
reacting on r

{ reaction r requests read }
accept request from r

{ update bundle b available }
start reaction r

{ ^R = apply(-R,b) }

{ no conflict }
all in reaction commit,

dispatch update bundles,
and release all locks

{ conflict }
all in reaction roll back
and release all locks

{ reaction r requests lock release }
release lock

{ }
non-existing

instantiated by reaction r
{ -R = ^R = R = Ø }

{ reaction r requests write to response state }
join reaction

{ -R = ^R = R }

START

Fig. 10. Reactor state machine. Transitions are written {precondition}activity{postcondition}.
States are written {invariant}state.

interaction (read-access, write-access, and beginning to react to other update bundles)
with reactors that are not part of the same reaction. Refer to Fig. 10 for an overview.

Intuitively, reaction scope extends to include all reactors owning or (non-passively)
reading relations being written, while lock dynamically extends to include all reactors
owning relations being read (as well as all reactors in the reaction scope). When a re-
mote reactor is read, an exclusive lock on the reactor is acquired and held for the entire
duration of the reaction. Should the same remote reactor need to be written later in the
same reaction, this defensive locking strategy guarantees that references to the remote
reactor’s pre-state and response state will in fact refer to two consecutive states of that
reactor because it has not been free to serve any other reactions in the meantime. The
problem of deadlock naturally arises in this setting; a reactor implementation would
require that standard deadlock detection, avoidance, or recovery techniques (e.g., opti-
mistic concurrency control) be used.

7 Advanced Semantic Issues

The rule evaluation model for reactors extends standard datalog with head clause nega-
tion (to express deletion) and reactor references. In this section, we review key aspects
of standard datalog semantics and define our extensions. We evaluate the rules by for-
ward derivation (also called bottom-up derivation). This strategy applies all rules on the
facts to produce all possible consequences—the appropriate approach for our purpose
of creating a completely defined new state.

7.1 Head Clause Negation: Semantics Via Translation

We handle negation in head clauses by transforming reactor rules to normal datalog
rules. First, we treat each of the four states of a given relation as distinct relations
from the point of standard datalog semantics. The goal of reactor rule evaluation is to
determine a unique, minimal solution for the response and future values of local and
remote relations. Let ri represent the response or future value of a local relation we
wish to compute (we will consider reactor references shortly). Let rP

1 , ... rP
n denote

the contents of the persistent relations immediately prior to a reaction; if the reactor has
just been created the relations are empty by default. Let ^rΔ+

i , ^rΔ−

i be the addition
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and the deletion sets of the update bundle applied to the reactor. The basic idea for
determining the solution to ri is as follows: (1) introduce a pair of auxiliary relations
(rΔ+

i ,rΔ−

i ) which contains the sets of tuples that will be added to and deleted from ri;
(2) eliminate negation in head clauses by transforming the program to a normal datalog
program containing references to rΔ+

i and rΔ−

i ; (3) evaluate the transformed program
using standard datalog semantics; (4) for ri a response state overwrite rP

i to include
rΔ+

i and exclude rΔ−

i ; for ri a future state copy (rΔ+

i ,rΔ−

i ) into (^rΔ+

i ,^rΔ−

i ).
We now describe our program transformation in detail. Given a reactor C with per-

sistent relations ri and ephemeral relations ti, let us redefine ^rΔ+

i , ^rΔ−

i , ^tΔ+

i and
^tΔ−

i to be the addition and the deletion sets of the update bundle applied to reactor C.
We can assume that ^rΔ+

i ∩^rΔ−

i = ∅ and ^tΔ+

i ∩^tΔ−

i = ∅ because this property is
checked by the originating reactor before creating new update bundles. Let -ri denote
the pre-, ^ri the stimulus, ri the response, and r^i the future state of the reaction.

Rewrite rules. Fig. 11 shows how our rewriting technique transforms a program with
negation in the head clauses to a program without them. Let us redefine rΔ+

i , rΔ−

i ,
tΔ+

i and tΔ−

i the sets of additions/deletions to the response state of the persistent and
ephemeral relations, correspondingly.

Rewrite: ri <- body as: rΔ+
i <- body (I)

Rewrite: not ri <- body as: rΔ−
i <- ri, body (II)

Rewrite: head <- ri, body as: head <- ri, not rΔ−
i , body (III)

Rewrite: head <- not ri, body as: head <- rΔ−
i , body

head <- not ri, body (IV)

Rewrite: r^i <- body as: r^Δ+
i <- body (VII)

Rewrite: notr^i <- body as: r^Δ−
i <- body (VIII)

Add: ri <- ^ri (V)

Add: ri <- r
Δ+
i (VI)

Fig. 11. Rewrite rules defining the semantics of reactor rule evaluation in terms of normal datalog

Rewrite rule (I) computes the set of tuples to be added to ri as the set of tuples that
the body clauses resolve to. Rule (II) computes the deletion set very similarly; the only
difference is adding a body clause which makes sure that a tuple gets deleted from a
relation only if it was already there. The extra clause ensures that this rewriting rule
does not introduce domain dependence—see further in this section for details. Rule
(VI) adds the new addition sets to the response state as soon as they are computed;
this ensures that the most current tuple additions are visible and propagating to the
rest of the reactor rules. We would like to similarly account for the deletion sets but to
reflect that in the response state we have to express it as negation in the rule head—
exactly what the program transformation technique is trying to eliminate. Therefore the
deletion sets must be accounted for and propagated via the reactor rules. As a result,
rule (III) restricts the matching for the tuples in ri to the ones that are not in the deletion
set; conversely, rule (IV) allows matching on tuples in the deletion set. The rest of the
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rules are trivial. For ti rules (I) to (VI) apply unchanged; rules (VII) and (VIII) do not
apply because ephemeral relations do not have a future state.

State updates. At the beginning of a reaction the following assignments take place:

-ri ::= rP
i , ^ri ::= ^rΔ+

i ∪ -ri \ ^rΔ−

i , ^ti ::= ^tΔ+

i

where ‘::=’ should be read as relation overwriting. Intuitively the first assignment over-
writes the pre-state of the current reaction’s persistent relations with the contents of the
relations prior to the reaction. The next assignments then apply the corresponding up-
date bundles to the pre-state to obtain the stimulus state. Note that the deletion set of
the update bundle ^tΔ−

i for ephemeral relations has no effect.
All assignments are done outside datalog and have the effect of keeping a snap-

shot copy of the pre-state and the stimulus state in case the rules need to read them or
the reaction rolls back. After the assignments take effect we can apply standard dat-
alog techniques to evaluate the program rules up to a fixpoint. If at any point during
the evaluation either rΔ+

i ∩ rΔ−

i �= ∅, r^Δ+

i ∩ r^Δ−

i �= ∅, tΔ+

i ∩ tΔ−

i �= ∅, or

t^Δ+

i ∩ t^Δ−

i �= ∅ the evaluation stops and the reaction rolls back. If we reach the
fixpoint (without either of the checks failing) we update rP

i to take into account the
deletion sets: rP

i ::= ri \rΔ−

i . Before quiescing, the reaction forms the update bundles

(r^Δ+

i ,r^Δ−

i ) and (t^Δ+

i ,t^Δ−

i ) for other reactors and for itself, if applicable.

7.2 Semantics of Normal Datalog Programs: Stratification and Safety

As a result of applying our rewrite technique, we are left with a normal datalog program
containing negation in body clauses only. Since it is possible to use negation to encode
logical paradoxes, we wish to apply a syntactic constraint to rules that will ensure that
a unique solution to collection of rules exists, without unduly affecting expressiveness.
We adopt the stratification semantics for normal programs with negation [15]. The main
idea behind stratification is to partition the program along negation such that for any
relation we fully compute its content before applying the negation operator on it. For
example, a program consisting of the rules q(x) <- p(x,y), not q(y) and
p(1,2) <- is not stratified because it contains recursion through negation.

Another desirable property of a datalog program is domain independence: a solution
should depend only on the known facts and not on the universal set of all facts. We
would also like to ensure finiteness, or at least weak finiteness: that the evaluation of
a rule from a finite set of facts yields a finite set of results, but infinite results caused
by infinite recursion cannot be ruled out. To ensure domain independence and weak
finiteness, we adopt the syntactic safety condition of Topor [14], which supports arith-
metic expressions and negation. Briefly, a rule is safe if all of its variables are limited.
A variable is limited if it occurs in a non-negated clause in the body, if is occurs in a
negated clause in the body and is not used elsewhere, or if it occurs in an expression
where a unique value of the variable can be computed given all the limited variables of
the expression. A program is safe if all of its rules are safe.
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7.3 Remote Reactor References

In a naive approach, every time a set of synchronously executing reactors Ci tries to
extrude its scope to a new reactor C which is executing, Ci (1) waits for C to quiesce
and accept the scope extrusion request, then (2) rolls back and restarts execution within
the new scope expanded to include C.

A less naive approach will first statically compute the transitive closure of all the syn-
chronously executing reactors based on the type information. The goal is to coordinate
the order of rule evaluation with the order of locking—see Section 6. The algorithm
will therefore compute the global stratification for the statically computed reactor clo-
sure; any time there is a choice of rules to evaluate next, the algorithm will choose the
one that is consistent with the global stratification. This will make sure that positive
information in relations is fully computed before evaluating its negation.

The program obtained by putting together the rules of all reactors Ck in a reaction
will contain remote references to relations in Ck . To make all remote references local
we define the following transformation. For every relation r in a reactor, the reactor
defines a shadow copy r~ and an implicit rule of the form r~(self,x) <- r(x).
Every remote reference c.r(x) to relation r can then be transformed into a local
access to r~(c,x). At this point the statically computed set of rules only contains local
references and it is treated as a single program to which we can apply the transformation
in Fig. 11.

7.4 Reactor Instantiation Details

The semantics of reactor instantiation must be defined with some care to ensure that
the number of reactors instantiated in a reaction is unambiguous. Consider a rule
whose head has the form r(x1, ..., xi, new M, xi+1, ..., xn), where M is a reactor
type name and xk, k ∈ [1...n] are variables bound in the rule body. Then a tuple
〈v1, ..., vi, α, vi+1, ..., vn〉 is a satisfying solution for the rule if and only if (1) α is
a reference to a reactor of type M, (2) α is globally unique, (3) α did not exist prior
to the current reaction, (4) 〈u1, ..., uj , α, uj+1, ..., um〉 does not satisfy any rule with a
head of the form s(y1, ..., yj , new M, yj+1, ..., ym), and (5) 〈u1, ..., ui, α, ui+1, ..., un〉
does not satisfy any rule with a head of the form r(x1, ..., xi, new M, xi+1, ..., xn), un-
less uk = vk for all k ∈ [1...n]. The basic idea behind this definition is that in each
reaction, for each instance of new in a rule head, a new, globally unique reactor refer-
ence is generated for each satisfying combination of values bound to variables in the
rule. The generalization of this semantics to rules containing multiple instances of new
is straightforward.

Consider the rules [1] r(new Foo, i) <- t(i), [2] s(y) <- r(y, _),
and [3] s(new Foo) <- . If relation t initially contains three tuples, then follow-
ing the instantiation semantics above, rule [1] causes three new reactors to be instanti-
ated. Similarly, rule [3]will generate one new reactor, distinct from those generated by
rule [1]. If relation s is initially empty, it will contain four distinct reactor references
at the end of the reaction: three from the reactors instantiated by rule [1], and one from
the reactor instantiated by rule [3]. If we were to duplicate any of rules [1]-[3], the
result of the reaction would remain the same, since the instantiation behavior of rules is
dependent on their semantics, not their syntactic form.
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Note that although the instantiation semantics distinguishes between new expres-
sions and variables in rule heads, it does not distinguish reference-bound variables from
other variables. Consider, e.g., the rules [4] t(new Bar, i) <- r(i) and [5]
s(new Bar, b) <- t(b, j). Rule [5] requires that there exist a unique, newly
generated reference for each b satisfying t(b, j). If r initially contains two tuples,
then rules [4] and [5] each instantiate two new reactors.

It will be convenient to assume that reactor references generated by the same reactor
are totally ordered, which allows them to be used as a source of ordered—but otherwise
uninterpreted—keys. The Nonce reactors used in Fig. 7 serve this purpose.

8 Extended Example: Three-Tier Web Application

Fig. 12 depicts an extended example which follows the structure of a conventional three-
tier web application for catalog ordering (note that this example makes extensive use of
the notational abbreviations of Fig. 5). Unlike the example in Fig. 9, which combined
“client” and “server” functionality in a single component, the example in Fig. 12 ex-
plicitly models a database (DB), web server (WebServer), and browser (Browser)
as distinct components. The browser and web server communicate entirely asynchro-
nously, while the web server and database communicate synchronously (i.e., transac-
tionally). “Page content” in the browser is modeled by the CompositeWidget reactor
type, which is instantiated with various primitive widget reactors (OutputWidget and
ButtonWidget from Fig. 9 and a new FormWidget), depending on the type of page
being displayed. Instances of CompositeWidget perform local (i.e., “browser-side”)
computation which performs basic form validation. Such functionality could easily be
replaced with more elaborate browser-based widgets, e.g., with AJAX-style asynchro-
nous behavior. One limitation of our current model is that all reactor references must
be strongly typed, which makes it difficult to model a web browser reactor that can ren-
der arbitrary pages, also represented as reactors. In the future, we will consider more
flexible type systems as well as weaker stratification requirements, which would allow
a completely generic browser to be defined.

9 Related and Future Work

Related Work. Fundamentally, reactors are “reactive systems” [8], combining and ex-
tending features from several, largely unrelated areas of research: synchronous lan-
guages, datalog [15], and the actor model [1].

Esterel [2], Lustre [4], Signal [7], and Argos [11] are prominent synchronous lan-
guages. In synchronous languages, the term causality refers to dependencies, and all
have restrictions on cyclic dependencies. Esterel only admits a program if all signals
can be inferred to be either present or absent (as opposed to unknown); this is referred
to as constructiveness. Esterel adopts a strict interleaving semantics, i.e. it assumes that
reactions cannot overlap temporally. In Esterel signals are broadcast instantaneously so
that all receptors of the signal will see it in the same instant and the signal will only
exist in that reaction. The reactor model, on the other hand, supports both synchronous
and asynchronous broadcasts (readers can react when a relation is changed) as well as
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def DB = {
(* trivial database: single value

containing item inventory *)
public inv: (int).

}

def WebServer = {
(* reference to the database *)
rDB: (ref DB)
(* server accepts two request types

from browsers: session initiation
and form submission *)

public ephemeral newSession:
(ref Browser).

public ephemeral formSubmit:
(ref Browser, int).

(* temp to hold new page *)
ephemeral newPage:

(ref CompositeWidget).

(* generate page on every reaction *)
newPage(new CompositeWidget) <- .
(* each has link back to server *)
c.rServer(self) <- newPage(c).

(* newSession creates three primitive
widgets for the new page *)

newSession(_), newPage(c): {
c.outWidget(new OutputWidget),
c.formWidget(new FormWidget),
c.buttonWidget(new ButtonWidget)

<- .
(* init primitive widget data,

in particular, copy current
inventory from db *)

o.label("Available: "),
o.val(toString(q)) <-

c.outWidget(o), rDB(d), d.inv(q).
f.label("Quantity to order: "),
f.val("1") <- c.formWidget(f).
b.label("Submit") <-

c.buttonWidget(b).
}

(* formSubmit checks whether
requested qty. is avail.; returns
appropriate responses *)

formSubmit(br, qr), newPage(c): {
c.outWidget(newOutputWidget) <- .
ephemeral reqOK() <-

qr >= q, rDB(d), d.-inv(q).
o.label("Success!") <-

reqOK(), c.outWidget(o).

d.inv(q’) := reqOK(), rDB(d),
d.-inv(q), q’ = q - qr.

o.label("Sorry!") <-
not reqOK(), c.outWidget(o).

}

(* submit new page to browser *)
br.showPage^(c) <- .

}

def Browser = {
(* request to display new page *)
public ephemeral showPage:

(ref CompositeWidget).
(* current page visible in browser *)
thePage: (ref CompositeWidget).

(* request to show new page updates
current page; link to browser *)

thePage(c) := showPage(c).
c.rBrowser(self) <- showPage(c).

}

def CompositeWidget = {
(* refs to server and browser *)
rServer: (ref WebServer).
rBrowser: (ref Browser).
(* widgets on page; the form and

button widgets are empty (not
used) on the response page *)

outWidget: (ref OutputWidget).
formWidget: (ref FormWidget).
buttonWidget: (ref ButtonWidget).

(* perform local validation: ensure
qty. requested less than inv. *)

ephemeral validateOK: ()
validateOK() <-

buttonWidget(b), b.pressed(),
formWidget(f), f.val(qty),
outWidget(o), o.val(inv),
toInt(qty) <= toInt(inv).

(* validation OK: submit to server *)
rServer.formSubmit^(br, toInt(qty))

<- validateOK(), rBrowser(br),
formWidget(f), f.val(qty).

(* validation fails: just reset qty.
to 1; do not submit *)

f.val("1") <- not validateOK().
}

def FormWidget = {
public label: (string).
public val: (string).

}

Fig. 12. Mini three-tier web application

synchronous and asynchronous point-to-point communication (by writing directly into
a public relation of the receiver).

Lustre and Signal also limit cyclic dependencies, but add sampling in the form of
the construct x = Exp when BExp meaning that Exp should be evaluated only
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when BExp is true. This facility provides a sophisticated way of reading values from
preceding reactions other than the immediately previous one. In the reactor model, such
predicates can be expressed directly as x(Exp) <- BExpwhere x should be a single-
ton relation. Argos is based on State Charts and hierarchical automata and distinguishes
itself from other synchronous languages by being graphical.

Generally speaking, the group of synchronous languages does not allow cycles in the
data flow graph – only pre-state to response-state connections are permitted when re-
ferring to the same variable. In the reactor model, stratification provides a more refined
classification that widely allows recursion while ruling out cases where the fixed point
could be ambiguous (of course, programs may still loop infinitely). Reactors provide
several features not found in synchronous languages, namely asynchrony, generativity,
and distributed transactions. We are not familiar with any other language that combines
these features.

Active databases [13] commonly express triggers of the form Event–Condition–
Action (ECA), where the action is carried out if on receipt of a matching event the
condition holds true. This can be expressed as action <- event, condition
in the reactor model. The reactor model eliminates the distinction between conditions
and events, and adds support for distribution, process generation, and synchronous com-
position.

Transaction Datalog [3] introduces transactions and database updates to datalog. In
Transaction Datalog, inserts and deletes are special atoms in rule bodies, and backward
derivation rather than forward derivation is used. To achieve concurrency in transac-
tions a concurrent conjunction operator, |, is added. In the reactor model, all rules
execute concurrently within the same reaction (subject to stratification) by default,
and thus sequentiality, rather than concurrency, must be programmed explicitly when
needed.

Future Work. While this paper has not focused on implementation, there are two broad
areas that are amenable to optimization: query incrementalization, and efficient imple-
mentation of synchronous composite reactions through low-overhead concurrency con-
trol. The former has already been studied in the datalog community (e.g., [5]), and we
intend to adapt those results appropriately to our setting. In the case of synchronous
reactions, recent results on efficient implementation of software transactions (e.g., [9])
are likely to be relevant.

Other issues we plan to investigate include: (1) contract/interface type systems; (2)
various abstraction facilities, such as reactor and rule parametricity and high-order
rules, that read, write, and deploy other rules; (3) more sophisticated access control
mechanisms; (4) function symbols (functors); (5) reactor garbage collection; (6) a truly
distributed implementation; (7) support for long-running (rather than atomic)
transactions.

Acknowledgments. The authors gratefully acknowledge the contributions of Rafah
Hosn, Bruce Lucas, James Rumbaugh, Mark Wegman, and Charles Wiecha to the de-
velopment of the ideas embodied in this work.
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Abstract. We investigate, in a process algebraic setting, a new notion
of compliance that we call strong service compliance: composed services
are strong compliant if their composition is both deadlock and livelock
free (this is the traditional notion of compliance) and whenever a message
can be sent to invoke a service, this service is ensured to be ready to serve
the invocation. We define also a new notion of refinement, called strong
subcontract pre-order, suitable for strong compliance: given a composi-
tion of strong compliant services each one executing according to some
specific contracts, we can replace the services with other services exe-
cuting corresponding strong subcontracts preserving strong compliance.
Finally, we present a characterization of the strong subcontract pre-order
resorting to the theory of (should) testing pre-order.

1 Introduction

One of the main novelties emerged during the last years of research in the field of
distributed computing is Service Oriented Computing (SOC). It is a novel para-
digm based on services intended as autonomous and heterogeneous components
that can be published and discovered via standard interface languages and pub-
lish/discovery protocols. One of the peculiarities of Service Oriented Computing,
distinguishing it from other distributed computing paradigms (such as compo-
nent based software engineering), is that it is centered around the so-called mes-
sage oriented architecture. This means that, given a set of collaborating services,
the current state of their interaction is stored inside the exchanged messages and
not only within the services. From a practical viewpoint, this means that it is
necessary to include, in the exchanged messages, the so-called correlation infor-
mation that permits to a service to associate a received message to the correct
session of interaction (in fact, the same service could be contemporarily involved
in different sessions at the same time).

Web Services is the most prominent service oriented technology: Web Services
publish their interface expressed in WSDL, they are discovered through the
UDDI protocol, and they are invoked using SOAP.

Two main approaches for the composition of services are currently under in-
vestigation and development inside the SOC research community: service orches-
tration and service choreography. According to the first approach, the activities
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of the composed services are coordinated by a specific component, called the
orchestrator, that is responsible for invoking the composed services and collect
their responses. Several languages have been already proposed for programming
orchestrators such as XLANG [Tha01], WSFL [Ley01] and WS-BPEL [OAS].

Choreography languages are attracting a lot of attention within W3C, where
the most credited choreography language WS-CDL [W3C] is currently under de-
velopment. Choreographies represent a “more democratic” alternative approach
for service composition with respect to orchestrations. Indeed, orchestrations
require the implementation of central points of coordination; on the contrary,
choreography languages support a high level description of peer-to-peer interac-
tions among services that directly communicate without the mediation of any
orchestrator. More precisely, the aim of choreography languages is to support
the high level description of systems that should be actually implemented as
combination of autonomous, loosely coupled and heterogenous services.

In this paper we continue a formal investigation of service composition initi-
ated in [BZ07]. In particular, in [BZ07] we have presented a process algebraic
modeling of the notion of contract intended as a “behavioural interface” of ser-
vices describing the possible flows of invocations that are received and/or emitted
by the service. Based on this contract language, we have formalized the notion of
correct composition of services, and we have defined a notion of subcontract pre-
order characterizing the possibility to replace services with subservices without
breaking the correctness of the composition. The notion of correctness considered
in [BZ07] requires that the composed services are both deadlock and livelock free.

In this paper we consider a stronger notion, called strong correctness, that
requires also the following: if a service invocation is ready to be executed, the
corresponding invoked service should be ready to serve the request. This intuitive
correctness assumption was not taken under consideration is previous work on
service compliance such as our previous paper [BZ07] and the paper by Carpineti
et al. [CCL+06]. For instance, in these papers, the service S1 = aS2 |bS2 , invoking
in parallel the two operations a and b provided by the service S2, is considered
compliant with a service S2 = a; b that serves first a and then b. In practice,
it could happen that the request on the operation b could reach S2 before the
request on operation a. In this case, usual service invocation protocols (such as,
e.g., SOAP) returns an exception indicating the unavailability of the requested
operation. Strong compliance considers also this kind of exceptions as errors
that breaks the correctness of the composition. For instance, according to strong
compliance, S1 is not compliant with the above S2 but it is compliant with
another service S2 = a|b ready to serve both the requests on a and b.

In order to formalize strong compliance, we need to slightly modify the calcu-
lus introduced in [BZ07]. The first difference is that we add locations to services
and to output actions. This because the kind of exceptions described above is
meaningful assuming that messages are directed to a specific target service, and
the exception is raised when the target service is not ready to serve the re-
quest contained in the message. The second difference is that the calculus that
we consider in the present paper has a standard output prefix instead of the
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output τ ; a always prefixed by an internal τ action considered in [BZ07]. This
assumption, permitted us to prove in [BZ07] several interesting results. The most
important one is that a suitable subcontract pre-order can be defined abstracting
away from the input alphabet of the services in the context. Even if we remove
this assumption considering a standard output prefix, the new notion of strong
compliance allows us to achieve an even stronger result: a suitable strong sub-
contract pre-order can be defined abstracting away from both the input and the
output alphabet of the other services in the context. This is a rather important
property that permits to define a general notion of strong subcontract which is
independent of the context in which the corresponding service substitutions are
done.

We foresee at least two main applications for our notion of strong subcontract.
On the one hand, it can be exploited in the service discovery phase. Consider,
for instance, a service system defined in terms of the contracts that should be
exposed by each of the service components. The actual services to be combined
could be retrieved independently one from the other (e.g. querying contemporar-
ily different service registries) collecting those services that either exposes the
expected contract, or one of its strong subcontract. On the other hand, the no-
tion of strong subcontract could be useful in service updates in order to ensure
backward compatibility. Consider, e.g., a service that should be updated in order
to provide new functionalities; if the new version exposes a strong subcontract
of the previous service, our theory ensures that the new service is a correct
substitute for the previous one.

The last technical contribution of the paper is a characterization of our notion
of subcontract achieved resorting to the theory of testing [DH84], in particular
to the should testing pre-order investigated in [RV05]. This characterization
permits to have an effective procedure to prove whether a contract is a strong
subcontract of another one. In fact, the definition of strong subcontract is not
directly applicable because it contains a universal quantification on all possible
contexts.

Structure of the Paper. Section 2 reports the syntax and the operational
semantics of the calculs that we use in our theory for strong service compliance.
Section 3 reports the formalization of strong service compliance while Section
4 reports about our investigation of the new notion of strong subcontract pre-
order. Finally, Section 5 contains conclusive remarks and a comparison with the
related literature.

2 Contracts and Service Compositions

In this section we introduce the syntax and the operational semantics of the
calculus that we use in the following section to investigate formally the notion
of strong compliance.
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2.1 Syntax

We assume a denumerable set of action names N , ranged over by a, b, c, . . .. The
set Ncon = {a∗ | a ∈ N} is the set of contract action names. Moreover, we
consider a denumerable set Loc of location names, ranged over by l, l′, l1, · · ·.
The set Nloc = {al | a ∈ N , l ∈ Loc} is the set of located action names. The set
Acon = Ncon ∪ {a∗ | a∗ ∈ Ncon} is the set of input and output contract actions.
The set Aloc = Nloc ∪ {al | al ∈ Nloc} is the set of input and output located
actions. We use τ /∈ N to denote an internal (unsynchronizable) computation.
Given a set of located action names I ⊂ Nloc, we denote: with I = {al | al ∈ I}
the set of output actions performable on those names and with Il = {a | al ∈ I}
the set of action names with associated location l.

Definition 1. (Contracts and Systems) The syntax of contracts is defined
by the following grammar

C ::= 0 | 1 | τ | a∗ | a∗ | a | al |
C; C | C+C | C|C | C\M | C∗

where M ⊆ Ncon. The set of all contracts C is denoted by Pcon. In the following
we will omit trailing “1” when writing contracts.
The syntax of systems (contract compositions) is defined by the following gram-
mar

P ::= [C]l | P ||P | P\\L
where L ⊆ Aloc. A system P is well-formed if: (i) every contract subterm [C]l
occurs in P at a different location l and (ii) no output action with destination
l is syntactically included inside a contract subterm occurring in P at the same
location l, i.e. actions al cannot occur inside a subterm [C]l of P . The set of all
well-formed systems P is denoted by P. In the following we will just consider
well-formed systems and, for simplicity, we will call them just systems.

The contracts are specified using a typical process algebra. We use 0 and 1 to
denote the two possible final states of a service execution: unsuccessful or suc-
cessful, respectively. The possible basic actions are the typical internal τ action
and the input/output actions. We distinguish between input/output actions ex-
ecuted internally (synchronization between two threads of the same service) and
input/output actions involving different services. The first kind of interaction
occurs on the contract action names decorated with the subscript star: input
actions are denoted with a∗, while output actions with a∗. The second kind
of interaction occurs on the standard actions names: input actions are denoted
with a, while output actions with al, where l is the name of the target location
of the output action. The composition operators are the standard sequence ; ,
choice + , parallel | , restriction (only on local contract action names) \ , and
repetition ∗.

The syntax of compositions permits to represent a service located at location
l, and executing according to the contract C, simply as [C]l. Services are com-
posed using parallel composition || and restriction \\ . The restriction operator



100 M. Bravetti and G. Zavattaro

for compositions distinguishes between input and output actions, e.g., we write
[C]l\\{al, bl′} to state that the service [C]l cannot perform inputs on a (e.g.,
because a is an output port of the service running at l) and cannot perform
outputs on the port b of the service running at location l′ (e.g., because b is an
output port of that service).

2.2 Operational Semantics

The operational semantics is defined in terms of a labeled transition system de-
fined in two steps; we first define the semantics of contracts and, based on the cor-
responding transition systems, we define the semantics for service compositions.

In the following, we take α to range over the set of syntactical actions SAct =
Acon ∪ N ∪ {al | al ∈ Nloc} ∪ {τ}.

The operational semantics of contracts is defined by the rules in Table 1 (plus
symmetric rules) while the operational semantics of systems is defined by the
rules in Table 2 (plus symmetric rules). We take β to range over the set of actions
executable by contracts and systems, Act = Acon ∪N ∪Aloc ∪{τ}. We take λ to
range over the set of transition labels L = Act∪{√}, where

√
denotes successful

termination.

Table 1. Semantic rules for contracts (symmetric rules omitted)

1
√

−→ 0 α
α−→ 1

C
λ−→ C′

C+D
λ−→ C′

C
λ−→ C′ λ �= √

C;D
λ−→ C′;D

C
√

−→ C′ D
λ−→ D′

C;D
λ−→ D′

C
a∗−→ C′ D

a∗−→ D′

C|D τ−→ C′|D′

C
√

−→ C′ D
√

−→ D′

C|D
√

−→ C′|D′

C
λ−→ C′ λ �= √

C|D λ−→ C′|D

C
λ−→ C′ λ �∈ M ∪ M

C\M
λ−→ C′\M

C∗
√

−→ 0
C

λ−→ C′ λ �= √

C∗ λ−→ C′; C∗

The operational semantics for contracts is standard for process algebra with
sequential composition and repetition. In particular, the label

√
is used to de-

note the successful completion of a contract. Given C; D, the contract D can
be activated if C has an outgoing transition labeled with

√
; while given the

repetition C∗, we have that it can either complete (it has an outgoing transition
labeled with

√
) or execute one instance of the contract C before becoming C∗

again. The unique specific comment is concerned with the rule for synchroniza-
tion that is admitted only for input/output actions executed on local contract
action names a∗. In fact, the synchronization on global names will be considered
in the semantics of systems.
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Table 2. Semantic rules for contract compositions (symmetric rules omitted)

C
a−→ C′

[C]l
al−→ [C′]l

C
al′−→ C′

[C]l
al′−→ [C′]l

P
λ−→ P ′ λ �= √

P ||Q λ−→ P ′||Q

P
al−→ P ′ Q

al−→ Q′

P ||Q τ−→ P ′||Q′

P
√

−→ P ′ Q
√

−→ Q′

P ||Q
√

−→ P ′||Q′

P
λ−→ P ′ λ �∈ L

P\\L
λ−→ P ′\\L

Also the operational semantics for systems is defined in a standard way: the
unique nonstandard operator is restriction that, as discussed above, distinguishes
between input and output actions executed on the same name. Observe that the
synchronization rule considers only nonlocal standard names.

In the remainder of the paper we use the following notations: P
λ−→ to mean

that there exists P ′ such that P
λ−→ P ′ and, given a sequence of labels w =

λ1λ2 · · · λn−1λn (possibly empty, i.e., w = ε), we use P
w−→ P ′ to denote the

sequence of transitions P
λ1−→ P1

λ2−→ · · · λn−1−→ Pn−1
λn−→ P ′ (in case of w = ε we

have P ′ = P , i.e., P
ε−→ P ).

3 Strong Compliance

We now define the notion of strong correct composition of contracts. Intuitively,
a composition of services is strongly correct if it is guaranteed that all services
eventually reach successful completion (it is both deadlock and livelock free)
and everytime a process may invoke an operation on a service, the target service
should be ready to serve the request. This second assumption is new with respect
to [BZ07] (where we only assumed guaranteed completion) and characterize the
new notion of strong compliance.

As discussed in the introduction, the rational behind strong compliance is that
standard protocols for service invocation usually raise exceptions in the case the
target of a service invocation is not ready to serve it. In order to formalize
situations in which exception cannot be raised, we define the auxiliary opera-
tor nso(P ) that evaluates non-synchronizable outputs immediately executable
by P , i.e. outputs that do not have a corresponding input, and the predicate
exceptionFree(P ) that indicates whether none of the above undesired excep-
tions can be raised in the system P .

Definition 2. (Exception freedomness) We first define nso(P ) inductively
on the structure of P :

nso([C]l) = {al | C
al−→ C′}

nso(P1||P2) = (nso(P1) − {al | P2
al−→ P ′

2}) ∪ (nso(P2) − {al | P1
al−→ P ′

1})

nso(P\\L) =
{

{exception} if nso(P ) ∩ L 	= ∅
nso(P ) otherwise
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where exception is an auxiliary name denoting the existence of an output with-
out a corresponding input. Finally, we define:

exceptionFree(P ) if and only if nso(P ) = ∅

Definition 3. (Strongly correct composition) A system P is a strongly
correct composition, denoted P ⇓, if for every P ′ such that P

τ−→∗
P ′ both the

following hold:

– exceptionFree(P ′) and

– there exists P ′′ such that P ′ τ−→
∗

P ′′
√

−→ .

Informally, a system is strongly correct if no exceptions can be raised in any of the
reachable states, and the successful termination of all composed services (denoted
with the transition labeled with

√
) is eventually reached. In [BZ07] we have

defined the notion of correct composition, denoted with P ↓, that corresponds
to the above definition without the first item about the exception freedomness
of all reachable states.

4 Contract Refinement

In this section we investigate a suitable notion of refinement for contracts com-
patible with strong correctness; intuitively, a contract C′ is a strong subcontract
of C if it is a “good” substitute of C, i.e. given a system P containing the service
[C]l, we can replace it with [C′]l preserving the strong correctness of P .

4.1 Input-Output Strong Subcontract Relation

In general, see for instance [CCL+06], the subcontract relation depends on the
alphabet (i.e. the possible actions) of the services present in P . For instance, we
can consider a+(c; P ) subcontract of a assuming that the action cl is not in the
alphabet of the other services (indeed, this implies that the new branch c; P of
the subcontract cannot interfere with the other services in the system).

We start defining a notion of subcontract parameterized on the input and
output alphabets of the services in the potential contexts. Then we prove that,
thanks to the new exception freedomness assumption, we can abstract away from
these alphabets.

We first formally define the input and output alphabets of systems.

Definition 4. (Input and Output sets) Given the contract C ∈ Pcon, we
define I(C) as the subset of N of the potential input actions of C:

I(0)= I(1)= I(τ)= I(a∗)= I(a∗)= I(al)= ∅ I(a) = {a}
I(C;C′) = I(C+C′) = I(C|C′) = I(C)∪I(C′) I(C\M) = I(C∗) = I(C)

We define O(C) as the subset of Nloc of the potential output actions of C:

O(0)= O(1)= O(τ)= O(a)= O(a∗)= O(a∗)= ∅ O(al) = {al}
O(C;C′) = O(C+C′) = O(C|C′) = O(C)∪O(C′) O(C\M) = O(C∗) = O(C)
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Note that the set M in C\ M does not influence I(C\ M) and O(C\ M)because
it contains only contract names outside N . Given the system P , we define I(P )
as the subset of Nloc of the potential input actions of P :

I([C]l) = {al | a ∈ I(C)} I(P ||P ′) = I(P ) ∪ I(P ′) I(P\\L) = I(P ) − L

We define O(P ) as the subset of Nloc of the potential output actions of P :

O([C]l) = O(C) O(P ||P ′) = O(P ) ∪ O(P ′) O(P\\L) = O(P ) − L

In the following we make the nonrestrictive assumption that the other services
composed in parallel with the service that we want to substitute are of the form
([C1]l1 || · · · ||[Cn]ln)\\L; this is not restrictive because it is always possible to use
standard renaming techniques to avoid capture of names while extending the
scope of restrictions. We denote with Pconpres the subset of systems of the form
([C1]l1 || · · · ||[Cn]ln)\\L.

Note that, given P = ([C1]l1 || . . . ||[Cn]ln)\\I ∪ O ∈ Pconpres, we have I(P ) =
(
⋃

1≤i≤n I([Ci]li)) − I and O(P ) = (
⋃

1≤i≤n O([Ci]li)) − O. In the following we
let Pconpres,I,O, with I, O ⊆ Nloc, denote the subset of systems of Pconpres such
that I(P ) ⊆ I and O(P ) ⊆ O.

In the next definition we use the following notation: given a contract C ∈ Pcon,
we use oloc(C) to denote the subset of Loc of the locations target of the output
actions occurring inside C.

Definition 5. (Input-Output strong subcontract relation) A contract C′

is a subcontract of a contract C with respect to a set of input located names
I ⊆ Nloc and output located names O ⊆ Nloc, denoted C′ I,OC, if and only if
for all l ∈ Loc such that l /∈ oloc(C) ∪ oloc(C′) and P ∈ Pconpres,I,O such that
l /∈ loc(P ) we have

([C]l||P )⇓ ⇒ ([C′]l||P )⇓

The following Proposition states an intuitive contravariant property: given
 I′,O′ , and the greater sets I and O (i.e. I ′ ⊆ I and O′ ⊆ O) we obtain a
smaller relation  I,O (i.e.  I,O ⊆  I′,O′). This follows from the fact that
extending the sets of input and output actions means considering a greater set
of discriminating contexts.

Proposition 1. Let C, C′ ∈ Pcon be two contracts, I, I ′ ⊆ Nloc be two sets of
input channel names such that I ′ ⊆ I and O, O′ ⊆ Nloc be two sets of output
channel names such that O′ ⊆ O. We have:

C′ I,OC ⇒ C′ I′,O′C

Proof. Let us suppose C′ I,OC. Consider now l ∈ Loc, l /∈ oloc(C)∪ oloc(C′),
and P ∈ Pconpres,I′,O′ , l /∈ loc(P ), such that ([C]l||P )⇓. As I ′ ⊆ I and O′ ⊆ O,
then also P ∈ Pconpres,I,O. Thus, as we suppose C′ I,OC, ([C′]l||P ) ⇓. This
implies that also C′ I′,O′C.
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The following Proposition states an intermediary result useful in subsequent
proofs.

Proposition 2. Let C, C′ ∈ Pcon be contracts and I, O ⊆ Nloc be sets of located
names and let C′ I,OC. For every l ∈ Loc, l /∈ oloc(C) ∪ oloc(C′), and P ∈
Pconpres,I,O, l /∈ loc(P ), such that ([C]l||P )⇓, we have

(
[C′]l\\(I([C′]l) − I([C]l))||P

)
⇓ and

(
[C′]l\\(O(C′) − O(C))||P

)
⇓

Proof. We discuss the result concerned with restriction of outputs (the proof
for the restriction of inputs is symmetric). Let C′ I,OC. Given any P ∈
Pconpres,I,O such that ([C]l||P )⇓, we will show that ([C′]l\\(O(C′) − O(C)) ||P )⇓.
We first observe that ([C]l || P\\(O(C′) − O(C)))⇓. Since C′ I,OC, we derive
([C′]l || P\\(O(C′) − O(C)))⇓.
As a consequence ([C′]l\\(O(C′) − O(C)) || P\\(O(C′) − O(C)))⇓. We can con-
clude ([C′]l\\(O(C′) − O(C)) || P )⇓.

The following proposition states an important property which is a direct con-
sequence of the assumption of exception freedomness of correct compositions.

Proposition 3. Let C, C′ ∈ Pcon be contracts and I, O ⊆ Nloc be sets of located
names and let C′ I,OC. For every l ∈ Loc, l /∈ oloc(C) ∪ oloc(C′), and P ∈
Pconpres,I,O, l /∈ loc(P ), such that ([C]l||P )⇓,

([C′]l||P ) τ−→
∗

([C′
der ]l||Pder) ⇒

{
∀ al′ ∈ O(C′) − O(C). C′

der

al′−→/
∀ a ∈ I(C′) − I(C). Pder

al−→/

Proof. We proceed by contradiction for both statements.
Concerning the first statement. Suppose that there exist C′

der, Pder such that

([C′]l||P ) τ−→
∗

([C′
der ]l||Pder) and C′

der

al′−→ for some al′ ∈ O(C′) − O(C). We
further suppose (without loss of generality) that such a path is minimal, i.e.

no intermediate state (C′
der2||Pder2) is traversed, such that C′

der2
al′−→ for some

al′ ∈ O(C′) − O(C). This implies that the same path must be performable by
([C′]l\\(O(C′) − O(C)) || P ), thus reaching the state
([C′

der]l\\(O(C′) − O(C)) || Pder). However, since in the state C′
der of contract C′

we have C′
der

al′−→ for some al′ ∈ O(C′) −O(C) and the execution of al′ is disal-
lowed by restriction, we will have out([C′

der]l\\(O(C′) − O(C))) = {exception},
thus ([C′]l\\(O(C′) − O(C)) || P ) 	⇓ contradicting Proposition 2.

Concerning the second statement. Suppose that there exist C′
der, Pder such

that ([C′]l||P ) τ−→
∗

([C′
der]l||Pder) and Pder

al−→ for some a ∈ I(C′) − I(C).
We further suppose (without loss of generality) that such a path is minimal,
i.e. no intermediate state (C′

der2||Pder2) is traversed, such that Pder2
al−→ for

some a ∈ I(C′) − I(C). This implies that the same path must be performable by
([C′]l || P\\(I([C′]l) − I([C]l))), thus reaching the state
([C′

der]l || Pder\\(I([C′]l) − I([C]l))). However, since in the state Pder of system P
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we have Pder
al−→ for some a ∈ I(C′)−I(C) and the execution of al is disallowed

by restriction, we will have out(Pder\\(I([C′]l) − I([C]l))) = {exception}, thus
([C′]l || P\\(I([C′]l) − I([C]l))) 	⇓. This implies ([C′]l\\(I([C′]l) − I([C]l))||P ) 	⇓
contradicting Proposition 2.

We are finally ready to prove the main results of this subsection. We separate
these results in two independent Propositions; the first one states that the set of
potential inputs of the other contracts in the system is an information that does
not influence the strong subcontract relation, the second one states the same
about outputs.

Proposition 4. Let C ∈ Pcon be a contract, O ⊆ Nloc be a set of located output
names and I, I ′ ⊆ Nloc be two sets of located input names such that O(C) ⊆ I, I ′.
We have that for every contract C′ ∈ Pcon,

C′ I,OC ⇐⇒ C′ I′,OC

Proof. Let us suppose C′ I′,OC (the other direction is symmetric). Given any
l ∈ Loc, l /∈ oloc(C) ∪ oloc(C′), and P ∈ Pconpres,I,O, l /∈ loc(P ), such that
([C]l||P ) ⇓, we will show that ([C′]l||P ) ⇓. We first observe that ([C]l || P\\(I −
O(C)))⇓. Since C′ I′,OC and O(C) ⊆ I ′, we derive ([C′]l || P\\(I − O(C)))⇓.
Due to Proposition 3 we have that ([C′]l||P\\(I − O(C))) can never reach by
τ transitions a state where outputs in O(C′) − O(C) are executable by some
derivative of C′, so we conclude ([C′]l||P )⇓.

Proposition 5. Let C ∈ Pcon be a contract, O, O′ ⊆ Nloc be two sets of located
output names such that for every l ∈ Loc we have I(C) ⊆ Ol, O

′
l, and I ⊆ Nloc

be a set of located input names. We have that for every contract C′ ∈ Pcon,

C′ I,OC ⇐⇒ C′ I,O′C

Proof. Let us suppose C′ I,O′C (the other direction is symmetric). Given any
l ∈ Loc, l /∈ oloc(C) ∪ oloc(C′), and P ∈ Pconpres,I,O, l /∈ loc(P ), such that
([C]l||P )⇓, we show that ([C′]l||P )⇓. We observe that ([C]l || P\\(O − I([C]l)))⇓.
Since C′ I,O′C and I([C]l) ⊆ O′, we derive ([C′]l || P\\(O − I([C]l))) ⇓. As
a consequence ([C′]l\\I(C′) − I(C) || P\\(O − I([C]l))) ⇓ and ([C′]l\\I(C′) −
I(C) || P ) ⇓. Due to Proposition 3 we have that ([C′]l\\I(C′) − I(C) || P ) can
never reach by τ transitions a state where outputs in I([C′]l) − I([C]l) are exe-
cutable by some derivative of P , so we conclude ([C′]l||P )⇓.

These last two Proposition permits us to forget about the restrictions on the
input/output alphabets of the services in the context in which we apply the
substitution of one contract with one of its subcontracts, considering always
 Nloc,Nloc

. We denote this relation simply with  and we call it the strong
subcontract pre-order.1 We define  assuming a limited set of possible con-
texts and then we prove that this limitation is not relevant. The new set of
1 It is easy to see that �� Nloc,Nloc

is reflexive and transitive.
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contexts does not contain restrictions, i.e., we consider [C1]l1 || · · · ||[Cn]ln instead
of ([C1]l1 || · · · ||[Cn]ln)\\L. We call P ∈ Pconpar the subset of systems of the form
[C1]l1 || · · · ||[Cn]ln .

Definition 6. (Strong subcontract pre-order) A contract C′ is a strong
subcontract of a contract C denoted C′ C, if and only if for all l ∈ Loc such
that l /∈ oloc(C) ∪ oloc(C′) and P ∈ Pconpar such that l /∈ loc(P ) we have

([C]l||P )⇓ ⇒ ([C′]l||P )⇓

Proposition 6. Let C, C′ ∈ Pcon be two contracts:

C C′ if and only if C′ Nloc,Nloc
C

Proof. The if part is simple as  is defined as  Nloc,Nloc
assuming a subset

of possible contexts P .
We now prove the only-if part. Supposed P = ([C1]l1 || . . . ||[Cn]ln)\\L, let I, O ⊂

Nloc be such that I = {al | ali ∈ L ∧ 1 ≤ i ≤ n} and O = {al | al ∈ L} (in O
only outputs on the location l in the hypothesis of the proposition are cosidered).
We have that ([C]l||(P\\L))⇓ ⇐⇒ ([C]l||(P\\I ∪ O))⇓ ⇐⇒ ([C]l||(P{τ ;0/α|α ∈
O}\\I)) ⇓ ⇐⇒ ([C]l||P ′) ⇓, where P ′ is obtained from P ′′ ≡ P{τ ;0/α|α ∈ O}
as follows. We call M ∈ N the (finite) set of action names occurring in C and
C′. We consider an arbitrary injective function rel : M → (N − M) that maps
each action name a in M into a fresh name rel(a). For each al′ ∈ I, we do
the following: (i) we replace each syntactical occurrence of a inside the unique
subterm [C′′]l′ of P ′′ with rel(a), and (ii) we replace each syntactical occurrence
of al′ inside P ′′ with rel(a)l′ . Since the same chain of “ ⇐⇒ ” holds for C′

(using the same relabeling function “rel”), we have that the result is a direct
consequence of the definition of strong subcontract pre-order applied to P ′.

4.2 Independent Refinement

In this subsection we prove that the strong subcontract pre-order  , which has
been defined assuming that the other services in the context are kept unchanged
while applying the refinement, is suitable also for a more general refinement that
is applied independently on all services contemporarily. This is an important
property for a refinement notion suitable for service oriented computing; indeed,
services are loosely coupled in the sense that they can be updated/modified
independently one from the other ones. Independent refinements can be defined
as follows.

Definition 7. (Independent subcontract pre-order) A pre-order ≤ over
Pcon is an independent subcontract pre-order if, for any n ≥ 1, contracts C1, . . . ,
Cn ∈ Pcon and C′

1, . . . , C
′
n ∈ Pcon such that ∀i. C′

i ≤ Ci, and distinguished
location names l1, . . . , ln ∈ Loc such that ∀i. li /∈ oloc(Ci) ∪ oloc(C′

i), we have

([C1]l1 || . . . || [Cn]ln)⇓ ⇒ ([C′
1]l1 || . . . || [C′

n]ln)⇓
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We will show that the maximal individual subcontract pre-order corresponds
to the pre-order  defined in the previous subsection. This is achieved defining a
more general class of pre-orders called singular subcontract pre-orders, showing
that all independent subcontract pre-orders are also singular subcontract pre-
orders, and finally observing that  (which is the maximum of all singular
subcontract pre-orders) is also a singular subcontract pre-order.

Intuitively a pre-order ≤ over Pcon is a singular subcontract pre-order when-
ever the strong correctness of systems is preserved by refining just one of the
contracts. More precisely, for any n ≥ 1, contracts C1, . . . , Cn ∈ Pcon, 1 ≤ i ≤
n,C′

i ∈ Pcon such that C′
i ≤ Ci, and distinguished location names l1, . . . , ln ∈ Loc

such that ∀k 	= i. lk /∈ oloc(Ck) and li /∈ oloc(Ci) ∪ oloc(C′
i), we require

([C1]l1 || . . . || [Ci]li || . . . || [Cn]ln)⇓ ⇒ ([C1]l1 || . . . || [C′
i]li || . . . || [Cn]ln)⇓

By exploiting commutativity and associativity of parallel composition we can
group the contracts which are not being refined and get the following cleaner
definition. We recall that Pconpar denotes the subset of systems of the form
[C1]l1 || . . . ||[Cn]ln .

Definition 8. (Singular subcontract pre-order) A pre-order ≤ over Pcon

is a singular pre-order if, for any C, C′ ∈ Pcon such that C′ ≤ C, l ∈ Loc such
that l /∈ oloc(C) ∪ oloc(C′), P ∈ Pconpar such that l /∈ loc(P ) we have

([C]l||P )⇓ ⇒ ([C′]l||P )⇓

It is easy to see that the strong subcontract pre-order  is the maximal
singular subcontract pre-order as it relates all pairs of contracts that satisfy the
property stated in the Definition 8.

In order to prove the existence of the maximal independent subcontract pre-
order, we will prove that every pre-order that is an independent subcontract is
also a singular subcontract (Theorem 1), and vice-versa (Theorem 2).

Theorem 1. If a pre-order ≤ is an independent subcontract pre-order then it
is also a singular subcontract pre-order.

Proof. Suppose that ≤ is an independent subcontract pre-order. Consider n ≥ 1,
C, C′ ∈ Pcon, l ∈ Loc and P ∈ Pconpar such that l /∈ loc(P ). From ([C]l||P ) ⇓
and C′ ≤ C, we can derive ([C′]l||P ) ⇓ by just taking in the definition of in-
dependent subcontract pre-order, C1 = C, C′

1 = C′, C2 . . . Cn to be such that
P = (C2|| . . . ||Cn) and finally C′

i to be Ci for every i ≥ 2 (since ≤ is a pre-order
we have C ≤ C for every C).

Theorem 2. If a pre-order ≤ is a singular subcontract pre-order then it is also
an independent subcontract pre-order

Proof. Consider n ≥ 1, contracts C1, . . . , Cn ∈ Pcon and C′
1, . . . , C

′
n ∈ Pcon

such that ∀i. C′
i ≤ Ci, and distinguished location names l1, . . . , ln ∈ Loc such

that ∀i. li /∈ oloc(Ci) ∪ oloc(C′
i). For any i we let Pi = [Ci]li and P ′

i = [C′
i]li . If

(P1|| . . . ||Pn)⇓ we can derive (P ′
1|| . . . ||P ′

n)⇓ in n steps: at the i-th step we replace
Pi with P ′

i without altering the correctness of the system.
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We can, therefore, conclude that there exists a maximal independent subcon-
tract pre-order and it corresponds to “ ”.

4.3 Resorting to Should Testing

The remainder of this section is devoted to the definition of an actual procedure
for determining that two contracts are in strong subcontract relation. This is
achieved resorting to the theory of should-testing [RV05].

In the following we use the following abuse of notation: “C\\M” stands for
“C{0/α|α ∈ M}”. This allows us, e.g., to achieve a transition system isomorphic
to that of [C]l\\I, with I = {al | a ∈ M} for some M ⊆ N , simply by considering
[C\\M ]l.

First, we need a preliminary result that is a direct consequence of the fact
that C′ Nloc,

�
l∈Loc I([C]l)C if and only if C′ C, due to Proposition 5.

Lemma 1. Let C, C′ ∈ Pcon be contracts. We have

C′\\(I(C′) − I(C))  C ⇒ C′  C

Proof. We will show that the hypothesis yields C′ Nloc,
�

l∈Loc I([C]l)C. From
this we can derive the result by using Proposition 5. Given any l ∈ Loc, l /∈
oloc(C) ∪ oloc(C′), and P ∈ Pconpres,Nloc,

�
l∈Loc I([C]l), l /∈ loc(P ), such that

([C]l||P )⇓, we will show that ([C′]l||P )⇓. We have ([C′\\I(C′)−I(C)]l || P )⇓ ⇐⇒
([C′\\I(C′)− I(C)]l || P\\I([C′]l)−I([C]l)) ⇓ ⇐⇒ ([C′]l || P\\I([C′]l)−I([C]l)) ⇓
⇐⇒ ([C′]l||P )⇓.

Note that the opposite implication trivially holds (by taking O = Nloc and
I = Nloc in Proposition 2).

In the following we denote with test the should-testing pre-order defined
in [RV05] where we consider the set of actions used by terms as being L (i.e.
we consider located input and output actions, unlocated input actions, and

√

is included in the set of actions of terms under testing as any other action). We
denote here with

√′ the special action for the success of the test (denoted by
√

in [RV05]).
In order to resort to the theory defined in [RV05], we first define a trans-

formation on the finite labeled transition system (LTS) of a system P . The
trasformation is performed in two steps:

1. First, for every state s of the LTS we do the following: called I(s) the set
of labels of outgoing input transitions from the state s, for every label in
I(P ) − I(s) we add to the state s an outgoing input transition with that
label that leads to the 0 state.

2. Then, for every output transition al, we replace the output transition with a
pair of connected transitions (the first one has the same source as the previ-
ous output transition and the second one has the same destination as the pre-
vious output transition): a τ transition followed by an al output transition.
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The same transformation is defined also on contracts C. Here, we describe the
effect of the two above transformations applied to the contracts checked in the
testing scenario that we are going to formalize. The first transformation on the
labeled transition system is used to capture those output actions performed by
the tester for which there is no corresponding input action in the tested process;
the new added input can synchronize with these actions and lead to the state
0. This disallows the possibility for the tester to complete its execution, thus to
succeed. The second transformation, on the other hand, is necessary to check
whether all output actions performable by the tested contract can be received
by the tester: in fact, the tau transition added before the output action permits
to enter in a state where only the output action is executable. If the tester does
not consume this output the contract stucks and the test cannot succeed.

Now we derive a normal form for systems and contracts of our calculus that
corresponds to terms of the language in [RV05]. The normal form of the system
P (denoted with NF(P )) is defined as follows, by using the operator recXθ
(defined in [RV05]) that represents the value of X in the solution of the minimum
fixpoint of the finite set of equations θ,

NF(P ) = recX1θ where θ is the set of i-indexed equations

Xi =
∑

j λi,j ; Xder(i,j)

where, assuming to enumerate the states in the transformed (according to the
two-steps procedure above) labeled transition system of P starting from X1, each
variable Xi corresponds to the i-th state of the transformed labeled transition
system of P , λi,j is the label of the j-th outgoing transition from Xi, and der(i, j)
is the index of the state reached with the j-th outgoing transition from Xi. We
assume empty sums to be equal to 0, i.e. if there are no outgoing transitions from
Xi, we have Xi = 0. The normal form of a contract C (denoted with NF(C))
is defined in the same way.

Theorem 3. Let C, C′ ∈ Pcon be two contracts. We have

NF(C′\\I(C′)−I(C)) test NF(C) ⇒ C′ C

Proof. According to the definition of should-testing of [RV05], since
NF(C′\\(I(C′)−I(C))) test NF(C) we have that, for every test t, if NF(C)
shd t, then also NF(C′\\(I(C′)−I(C))) shd t, where Q shd t iff

∀w ∈ L∗, Q′. Q||Lt
w−→ Q′ ⇒ ∃v ∈ L∗, Q′′ : Q′ v−→ Q′′

√′

−→

where ||L is the CSP parallel operator: in R||LR′ transitions of R and R′ with the
same label λ (with λ 	= τ,

√′) are required to synchronize and yield a transition
with label λ.

Let us now consider l ∈ Loc, l /∈ oloc(C) ∪ oloc(C′), and P ∈ Pconpar, l /∈
loc(P ), such that ([C]l||P )⇓. We consider t = NF(P ){√

;
√′

/
√}{a/al|a ∈ N},

i.e., the normal form of P where: we replace each occurrence of
√

with the
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sequence
√

;
√′ and we turn every output action al directed to [C]l into a. We

denote with t the term obtained by turning each al′ occurring in t into al′ , and
each al′(a) into al′(a). From the definition of shd it follows that NF(C) shd t.
Since NF(C′\\(I(C′)−I(C))) test NF(C), we have that also NF(C′\\(I(C′)−
I(C))) shd t. From the definition of shd and from the fact that output transitions
are always preceded by τ transitions (which guarantees that no output can be
enabled that does not have a synchronizing input transition) we can conclude
that (C′\\I(C′)−I(C)||P )⇓. The thesis directly follows from Lemma 1.

5 Related Work and Conclusion

We have considered a new notion of correctness for service compositions, modeled
using process calculi, in which we assume that whenever a message is sent to a
service in order to invoke a particular operation, the service should be ready to
serve it. We call this new notion strong compliance, and we develop around it an
entire theory. It comprises a suitable refinement for services based on a strong
subcontract pre-order, the proof that this refinement can be applied on each of
the service inside a composition independently, and an effective procedure that
can be used to prove whether a contract is a subcontract of another one.

The theory of contracts reported in this paper is different from the theory
reported in our previous paper [BZ07] in several aspects. The calculus considered
in [BZ07] imposes a limitation to output actions that are always preceeded by τ
internal actions; on the contrary, in this paper we consider standard input and
output prefixes. In this paper we add locations to services and output operations
in order to indicate the target of a message; this reflects more faithfully the Web
Services technology in which invocations include both the address of the service
and the operation to be invoked. Moreover, in this paper we consider a stronger
notion of compliance that requires to completely revisit the corresponding notion
of (strong) subcontract. The most interesting result is that, even if we consider a
more general language than [BZ07], we can achieve even stronger results thanks
to the notion of strong compliance. In particular, the strong subcontract pre-
order can now be defined abstracting away from both the input and the output
alphabets of the services in the context. Moreover, the characterization of the
strong subcontract pre-order (achieved also in this paper resorting to the theory
of testing) requires new nontrivial technicalities.

It is worth noting that there are some important differences between our form
of testing and the traditional one proposed by De Nicola-Hennessy [DH84]. The
main difference is that, besides requiring the success of the test, we impose also
that the tested process should successfully complete its execution. Moreover, all
output actions of both the tester and the tested process should be immediately
receivable. Another difference is in the treatment of divergence: we do not follow
the traditional catastrophic approach, but the fair approach introduced by the
theory of should-testing by Rensink-Vogler [RV05]. In fact, we do not impose
that all computations must succeed, but that all computations can always be
extended in order to reach success.
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We conclude our analysis of related work considering the theory of contracts
proposed by Fournet et al. [FHR+04] and by Carpineti et al. [CCL+06].

In [FHR+04] contracts are CCS-like processes; a generic process P is defined
as compliant to a contract C if, for every tuple of names ã and process Q,
whenever (νã)(C|Q) is stuck-free then also (νã)(P |Q) is. Our notion of contract
refinement differs from stuck-free conformance mainly because we consider a
different notion of stuckness. In [FHR+04] a process state is stuck (on a tuple
of channel names ã) if it has no internal moves (but it can execute at least one
action on one of the channels in ã). In our approach, an end-states different
from successful termination is stuck (independently of any tuple ã). Thus, we
distinguish between internal deadlock and successful completion while this is
not the case in [FHR+04]. Another difference follows from the exploitation of
the restriction (νã); this is used in [FHR+04] to explicitly indicate the local
channels of communication used between the contract C and the process Q. In
our context we can make a stronger closed-world assumption (corresponding to
a restriction on all channel names) because service contracts do not describe the
entire behaviour of a service, but the flow of execution of its operations inside
one session of communication.

The closed-world assumption is considered also in [CCL+06] where, as in
our case, a service oriented scenario is considered. In particular, in [CCL+06]
a theory of contracts is defined for investigating the compatibility between one
client and one service. Our paper consider multi-party composition where several
services are composed in a peer-to-peer manner. Moreover, we impose service
substitutability as a mandatory property for our notion of refinement; this does
not hold in [CCL+06] where it is not in general possible to substitute a service
exposing one contract with another one exposing a subcontract.

As future work, we plan to investigate strong compliance also in the context
of choreography languages, considering a process algebraic modeling of chore-
ographies that follows the proposals by Busi et al. [BGG+05, BGG+06] and by
Carbone et al. [CHY07]. In particular, we intend to define a procedure for ex-
tracting from a choreography the set of contracts (and strong subcontracts) of
services that could correctly play the roles specified in the choreography.
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Abstract. Building upon previous work on timed coordination lan-
guages, this paper presents a novel notion of refinement for these lan-
guages which satisfies the substitutability property: if the implementa-
tion I refines the specification S and if C[S] is deadlock free, for some
context C, then C[I ] is also deadlock free.

1 Introduction

As motivated by the constant expansion of computer networks and illustrated
by the development of distributed applications, the design of modern software
systems centers on re-using and integrating software components. This induces a
paradigm shift from stand-alone applications to interacting distributed systems,
which, in turn, naturally calls for well-defined methodologies and tools aiming
at integrating heterogeneous software components.

In this context, a clear separation between the interactional and the compu-
tational aspects of software components has been advocated by Gelernter and
Carriero in [14]. Their claim has been supported by the design of a model, Linda
([8]), originally presented as a set of inter-agent communication primitives which
may be added to almost any programming language. Besides process creation,
this set includes primitives for adding, deleting, and testing the presence/absence
of data in a shared dataspace.

A number of other models, now referred to as coordination models, have
been proposed afterwards (see [24,25] for a comprehensive survey of many of
them). One the extensions, of interest for this paper, concerns the introduction
of time. It is motivated both by industrial proposals such as JavaSpaces ([13])
and TSpaces ([29]) as well as by the coding of applications which evidence the
fact that data and requests rarely have an eternal life. For instance, a request
for information on the web has to be satisfied in a reasonable amount of time.
Even more crucial is the request for an ambulance which, not only has to be
answered eventually but within a critical period of time. The list could also be
continued with software in the areas of air-traffic control, manufacturing plants
and telecommunication switches, which are inherently reactive and, for which,
interaction must occur in “real-time”.

In our recent work ([17,19,20,21]), we have proposed different ways of in-
troducing time in coordination languages. For that purpose, we have used the
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classical two-phase functioning approach to real-time systems and have proved
that this approach was effective for modeling coordination in reactive systems.

However, although the need for techniques and tools to reason about concur-
rent programs is widely recognized in the concurrency community, using process
algebras such as CCS ([22]), CSP ([16]), π-calculus ([23]) and is met by a large
body of work (see for instance [1,3,4,12]), little attention has been paid to pro-
gramming methodologies in the coordination community. This lack is even more
crucial in the context of real-time systems for which strict delays have to be
guaranteed.

This paper aims at contributing to this effort. Work in other settings like
the B-method ([2]), the FDR tool ([26]), the concurrency workbench ([10]) have
evidenced that refinement is a fundamental notion for reasoning. After having
shown that the traditional definitions of refinement do not transpose directly in
a satisfactory way to Linda-like languages and, consequently, to our timed coor-
dination framework, we shall propose a new notion of refinement which satisfies
the substitutability property: if the implementation I refines the specification
S and if C[S] is deadlock free, for some context C, then C[I] is also deadlock
free. This property is particularly crucial since it enables a compositional way
of reasoning and thereby helps model checking to scale. Moreover, as Linda-like
languages can be embedded in our time setting, our notion of refinement also
applies to Linda-like languages and thus to a wide range of languages.

The rest of this paper is organized as follows. Section 2 introduces our timed
coordination models. Section 3 explains why the classical notions of trace-
refinement and failure-refinement are not suited for the coordination context.
In the aim of laying down the foundations to explain our refinement in sec-
tion 5, section 4 studies an event based semantics. Finally, section 6 draws our
conclusions and compares our work with related work.

2 Timed Coordination Languages

Our approach to the introduction of time in coordination languages follows the
classical two-phase functioning approach to real-time systems illustrated by lan-
guages such as Lustre ([9]), Esterel ([5]) and Statecharts ([15]). This approach
may be described as follows. In a first phase, elementary actions of statements
are executed. They are assumed to be atomic in the sense that they take no
time. Similarly, composition operators are assumed to be executed at no cost.
In a second phase, when no actions can be reduced or when all the components
encounter a special timed action, time progresses by one unit.

In that context, four families of timed coordination languages have been in-
troduced in [17]. They are obtained

1. by introducing delays stating that a communication primitive should only
be processed after some units of time;

2. by stating that tuples on the tuple space are only valid for some units of
time and that, similarly, requests for tuples are to be made during a period
of time;
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3. by introducing delays for some specific points in time;
4. by specifying absolute intervals of time in which actions should be processed

and, dually, by associating such intervals with tuples.

The first two families are said to incorporate a relative notion of time since
the delays and the validity of tuples and of operations are defined at execution
time with respect to their moments of consideration. In contrast, the last two
families are said to incorporate an absolute notion of time because they refer
statically to specific instants of a clock.

The expressiveness of these families has been studied in [17,19,20,21]. Two
interesting conclusions may be extracted from these papers. On the one hand,
from a programming point of view, the language embodying relative delays and
relative timed primitives (namely embodying the features of points 1 and 2
above) is the most interesting one. On the other hand, from an implementation
point of view, the language incorporating absolute delays and absolute timed
primitives (namely the features of points 3 and 4 above) is the most fundamental
one. We shall thus use the former language is this paper. Formally it is defined
as follows.

Definition 1. Let Stoken be a denumerable set, the elements of which are sub-
sequently called tokens and are typically represented by the letters t and u. Let
Stime be the set of time units or durations defined as the set composed of the
positive integers and of ∞ denoting infinity. Elements of Stime are typically rep-
resented by the letter d. Let Sprocvar be a denumerable set disjoint with Stoken
and Stime, the elements of which are typically denoted by X and are called pro-
cedure variables. Define the language L as the set of agents A generated by the
following grammar

C ::= telld(t) | askd(t) | getd(t) | naskd(t) | delay(d)
A ::= C | A ; A | A || A | A + A | X

where the durations d in the subscripts are not null.

As easily noticed by the careful reader, the communication primitives of the
language L are thus basically the Linda primitives equipped with time. Indeed,
the Linda primitives out, in and rd for, respectively, putting an object t in a
shared dataspace, getting it and checking for its presence are renamed as tell,
get and ask for compatibility with the syntax used in our previous publications.
Moreover, a primitive nask(t) has been added to test the absence of t on the
shared dataspace.

These primitives are enriched with durations (syntactically denoted by sub-
scripts) with the following intuition:

– the execution of telld(t) adds t to the dataspace but for d units of time only,
– if the execution of the askd(t), naskd(t), and getd(t) primitives need to sus-

pend1, this may only occur during d units of time, after which the primitives
fail.

1 Because of the non availability of t for the ask and get primitives or because of the
availability of t for the nask primitive.
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To these primitives is added the primitive delay(d) whose purpose is to force
time to pass by d units of time.

The composition operators are the traditional ones in concurrency theory:
; , || and + are used to respectively denote sequential composition, parallel
composition and external choice. Finally, following [11], the letter X is used to
denote an abstraction of procedure call and to allow recursion. These procedure
calls are defined as guarded agents by means of declarations, as follows.

Definition 2. Define the set G of guarded agents as the set of the agents G
given by the following grammar:

C ::= telld(t) | askd(t) | getd(t) | naskd(t) | delay(d)
A ::= C | A ; A | A || A | A + A | X

G ::= C | G ; A | G || G | G + G

where the durations in the subscripts are not null.

Definition 3. A declaration D is a list of associations <X, G> between pro-
cedure variables and guarded agents. Such a list may be infinite, so that D is
formally regarded as a mapping from procedure variables to guarded agents. For
the ease of reading, we shall also rewrite <X, G> as X = G.

To simplify the notations, we shall subsequently assume a declaration D to be
given and will omit it when no confusion is introduced.

As easily observed from the above definitions, the main property of guarded
agents is that any call to a procedure variable X is always preceded by at least
one communication primitive C. This (classical) property ensures that equations
of the form X = G are well-defined. Note that we do not require that procedure
calls are preceded by a tick clock. For instance, X = tell1(t) ; X is allowed. It
corresponds to a process that infinitively produces occurrences of the token t in
the same unit of time. Such behaviors are named Zeno-behaviors (see eg [18]).
They will be treated in a companion paper.

Example 1. An example may help to understand the above concepts. Let us code
a producer process which recursively produces items outdated after two units of
time and which takes a rest of five units of time after each item is produced.
Such a process may be coded as follows, where Prod represents the producer
and i the item being produced:

Prod = tell2(i) ; delay(5) ; Prod

It is worth observing the contents of the shared dataspace during the execution
of Prod. Started at time 1 with an empty dataspace, Prod first executes the
primitives tell2(i) which puts i for two units of time, namely until time 3. The
execution of the primitive itself takes no time so that Prod then executes the
delay(5) operation which forces it to stay idle until time 6. As a result, assuming
Prod is the only process being executed, the dataspace is again empty between
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times 3 and 6. This is summarized in the following picture where the contents of
the dataspace is drawn in each interval of time after the execution of the tell(i)
primitive and where the subscript associated with i denotes the current life of
the item.

�

1 2 3 4 5 6 7 8 9 Time

{i2} {i1} ∅ ∅ ∅ {i2} {i1} ∅

Similarly, a process which recursively requests the item i for one unit of time
and takes two units of time to actually consume it may be coded as follows:

Cons = get1(i) ; delay(2) ; Cons

The computation of Prod || Cons is then worth observing. As its first action is
to get i, the agent Cons has to wait that Prod has produced i. It can then get
it and then calls itself recursively after having wait two units of time, namely
at time 3. At that moment, Cons tries to get i again but for one unit of time
only. However, this is too short since Prod will only put a new occurrence of
i at time 6. As a result, the agent Cons is then be blocked for the rest of the
computation.

As just illustrated by the above example, tokens and primitives get older as
time evolves. This is formally captured by the following definitions.

Definition 4

1. Given an agent A ∈ L, we denote by A− the agent defined inductively as
follows:2

delay(d)− = delay(max{0, d − 1}
telld(t)− = telld(t)
askd(t)− = askmax{0,d−1}(t)

naskd(t)− = naskmax{0,d−1}(t)
getd(t)− = getmax{0,d−1}(t)

X− = X
(B ; C)− = B− ; C
(B || C)− = B− || C−

(B + C)− = B− + C−

2. Define the set of timed stores3 Ststore as the set of multisets of elements of
the form td where t is a token and d is a duration. Given a timed store σ, we
denote by σ− the new store obtained by decreasing the duration associated
with the tokens by one unit and by removing those associated in σ with 1 unit
of time: precisely, if all the notations are understood to relate to multi-sets,

σ− = {td−1 : td ∈ σ, d > 1}

2 We extend classical arithmetic on natural numbers by asserting that ∞ − 1 = ∞.
3 We use store as a synonym for shared date space.
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According to the two-phase functioning approach, a temporal step will be done
when no communication primitives can be executed. However, given that the
execution of tell primitives can always proceed, a temporal step only makes
sense if the agent under consideration offers the hope of an execution step in
the future, namely if it contains in an executable position an ask, nask or get
primitive or delay primitive associated with a non null duration. This is formally
expressed by the two following definitions.

Definition 5. Let Scom denote the set of communication primitives telld(t),
askd(t), getd(t), naskd(t) and delay(d) for any d ∈ Stime and t ∈ Stoken.
Define F : L → P(Scom) as the following function: for any communication
primitive c, procedure variable X defined in D by the declaration <X, G>, and
agents A and B,

F(c) = {c}
F(X) = F(G)

F(A ; B) = F(A)
F(A + B) = F(A) ∪ F(B)

F(A || B) = F(A) ∪ F(B)

Definition 6. For any agent A, the predicate A � holds iff the set F(A) con-
tains at least one primitive ask, nask, get or delay associated with a non null
duration.

Example 2. Consider the agents Prod and Cons of example 1 at the end of
the first unit of time. Prod has become delay(5) ; Prod and Cons has be-
come delay(2) ; Cons. Let us name these agents Prod′ and Cons′, respectively.
Intuitively, both agents are worth being continued. This is met by the above for-
malization. Indeed, one has F(Prod′ || Cons′) = {delay(5), delay(2)} and, con-
sequently, (Prod′ || Cons′) �. In contrast, consider Cons alone after one unit
of time. As no item i is produced, Cons has become get0(i) ; delay(2) ; Cons.
Let us denote by Cons′′ this agent. One has F(Cons′′) = {get0(i)} and, accord-
ingly, Cons′′ ��. This translates the fact that it is not interesting to continue
the computation of Cons (which will remain blocked forever).

The computations in L may be modeled by a transition system written in
Plotkin’s style. Following the explanation given above, the configurations to
be considered consist of an agent together with a multi-set of timed tokens, de-
noting the tokens currently available for the computation together with their
durations.

To easily express successful termination, we shall introduce particular config-
urations composed of a special terminating symbol E together with a multi-set
of tokens. For uniformity purposes, we shall abuse language and qualify E as an
agent. However, to meet the intuition, we shall always rewrite agents of the form
(E ; A), (E || A), and (A || E) as A. This is technically achieved by defining
the extended set of agents as follows, and by justifying the simplifications by
imposing a bimonoid structure. Finally, in contrast to the agents of definition 1,
we shall allow communication primitives associated with null durations.
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Communication primitives

(T)
d > 0

〈telld(t) | σ〉u → 〈E | σ ∪ {td}〉u

(A)
d, k > 0

〈askd(t) | σ ∪ {tk}〉u → 〈E | σ ∪ {tk}〉u

(N)
d > 0, � ∃k > 0 : tk ∈ σ

〈naskd(t) | σ〉u → 〈E | σ〉u

(G)
d, k > 0

〈getd(t) | σ ∪ {tk}〉u → 〈E | σ〉u

(D) 〈delay(0) | σ〉u → 〈E | σ〉u

General operators

(S)
〈A | σ〉u → 〈A′ | σ′〉u

〈A ; B | σ〉u → 〈A′ ; B | σ′〉u

(P)
〈A | σ〉u → 〈A′ | σ′〉u

〈A || B | σ〉u → 〈A′ || B | σ′〉u

〈B || A | σ〉u → 〈B || A′ | σ′〉u

(C)
〈A | σ〉u → 〈A′ | σ′〉u

〈A + B | σ〉u → 〈A′ | σ′〉u

〈B + A | σ〉u → 〈A′ | σ′〉u

(R)
< X, G >∈ D, 〈G | σ〉u → 〈A′ | σ′〉u

〈X | σ〉u → 〈A′ | σ′〉u

Time passage

(Ti)
A �= E, A �, 〈A | σ〉u �→
〈A | σ〉u � 〈A− | σ−〉u+1

Fig. 1. Transition rules of L

Definition 7. Define the set of extended agents Le as the set of the agents Ae
defined by the following grammar

C ::= telld(t) | askd(t) | getd(t) | naskd(t) | delay(d)
A ::= C | A ; A | A || A | A + A | X

Ae ::= E | A

Moreover, we shall subsequently assert that the structure (Seagent, E, ; , || )
is a bimonoid and simplify elements of Seagent accordingly. Finally, we extend
the A− notation by stating that E− = E.

The transition rules are the ones given in figure 1. An operational semantics may
be defined directly from them by reporting the traces of all the computation steps
made during the executions. Formally, it is specified in definition 9 where δ+ and
δ− are respectively used as ending marks respectively denoting successful and
failing computations. Moreover, given a set S, we respectively denote by Sω and
S∗ the set of infinite sequences and finite sequences composed from elements
of S.

Definition 8

1. Define the set of configurations Stconf as Le×Ststore×Stime. Configurations
are denoted as 〈A | σ〉u, where A is an agent, σ is a timed store of Ststore
and u is a time.

2. Define the set Sthist as the set Ststoreω ∪ Ststore∗.{δ+, δ−}
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Definition 9. Define the operational semantics Oh : L → P(Sthist) as the
following function. For any agent A,

Oh(A) = {σ0
u0 . · · · .σn

un .δ+ : 〈A0 | σ0〉u0 �→ · · · �→ 〈An | σn〉un ,
A0 = A, σ0 = ∅, u0 = 1, An = E, n ≥ 0}

∪
{σ0

u0 . · · · .σn
un .δ− : 〈A0 | σ0〉u0 �→ · · · �→ 〈An | σn〉un ��→,

A0 = A, σ0 = ∅, u0 = 1, An �= E, n ≥ 0}
∪
{σ0

u0 . · · · .σn
un . · · · : 〈A0 | σ0〉u0 �→ · · · �→ 〈An | σn〉un �→ · · · ,

A0 = A, σ0 = ∅, u0 = 1, ∀n ≥ 0 : An �= E}

where the �→ arrow denotes either a → transition or a � transition.

Note that the behavior of (untimed) Linda primitives is obtained as a particular
case of the transitions where all the communication primitives are associated
with a 1 time. Our language L thus subsumes Linda and, consequently, the
refinement theory we shall develop applies to Linda-like languages as well.

3 Trace and Failure Sets Refinements

In the traditional lines, exemplified by [2] and [26], one may define a first notion
of refinement by stating that an implementation I refines a specification S (both
I and S being agents of the L language) if any trace of execution made by I can
also be made by S, namely if Oh(I) ⊆ Oh(S).

Unfortunately, trace refinement takes only into account the actual traces
computed by the agents regardless of their possible interactions with an en-
vironment. As a result, trace refinement does not enjoy the required property of
substitutability.

Consider for instance A = get1(a) and B = get1(b). One has Oh(A) =
{∅1.δ

−} = Oh(B) and, consequently, A trace-refines B. Consider now C =
tell1(b). The parallel composition B || C has just one successful computation
∅1.{b}1.∅1.δ

+ whereas the alternative parallel composition A || C has just one
failing computation ∅1.{b}1.{b}2.δ

−. However, if trace refinement would enjoy
the substitutability property, given that B || C is deadlock free, then A || C
should also be deadlock free.

This phenomenon is quite well known in concurrency theory and the solution
is to use a failure semantics instead of a trace semantics. Intuitively, the idea
is to complete the description of a trace ending in a deadlock by a description
of the actions that the process can refuse. In other terms, if the environment
offers the actions of the refusal set then the environment in parallel with the
considered agent is still in a deadlock state. In the above example, this would
allow to distinguish the reason of the deadlock of A and B: the former deadlocks
because of the absence of the token a on the shared space whereas the latter
deadlocks because of the absence of the token b on the shared space. As the
deadlocks have different explanations, the failure semantics of A and B would
be different and, consequently, one would not have that A refines B.
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However, although intuitive, failures have at least three drawbacks which pre-
vent us from a direct transposition in our time coordination setting and, more
generally, for Linda-like languages.

First, traditional algebras such as CCS and CSP are based on the synchronous
communication of events. In this context, it is reasonable to build refusal sets
from actions which cannot be made by the agent under consideration even if they
are offered by the environment. However, in the L context and more generally
for Linda-like languages, what matters is not so much which actions are made
but more importantly the current contents of the shared dataspace. However, in
contrast to actions of which many can be offered by the environment, only one
contents of the shared space is of interest, namely the minimal one which allows
computations to be continued. This has lead us in previous work to consider
reactive sequences to build fully abstract semantics of Linda-like languages (see
[6,7]) and, basically amounts to abandoning the idea of failure sets.

Second, the nature of the choice operator in the synchronous setting of CCS
and CSP defines the failure sets of A + B as the union of the failure sets of
A and B. Rephrased in our setting, this would lead to consider that ask1(a)
failure-refines ask1(a) + tell1(b). However, ask1(a) waits for one unit of time
before deadlocking whereas ask1(a) + tell1(b) has no deadlock.

Third, as failures are traditionally defined in an untimed setting, there is no
provision for time. One could think of using timed failure sets defined in [27]
but, in view of the above two points, we prefer to define directly our notion of
refinement. To that end, we first rephrase the transition system of figure 1 in
terms of events and characterize the deadlocks of L agents.

4 Event Based Semantics

A first set of events corresponds to the consultations and modifications of the
store. Accordingly, the addition of a token t with duration d to the store is
denoted by the event t+d , a check of the presence of the token t is denoted by the
event t◦, and check of its absence, by t•. Moreover, the removal of an occurrence
of t out of the store corresponds to the event t−.

The second kind of event corresponds to an internal step of the agent, without
interaction with the environment. We will denote such an event τ . Finally, the
last event corresponds to the tick of the clock. It is denoted by ν.

Definition 10. Define Sevent as the set {t+d , t◦, t•, t− : t ∈ Stoken, d ∈
Stime} ∪ {τ, ν}. Moreover, let T ⊆ Stoken be a set of tokens. Define events(T )
as the set {t+d , t◦, t•, t− : t ∈ T, d ∈ Stime}

We associate with an agent the set of the events it can be responsible for.

Definition 11. Given an agent A, we define

A+ = {t : telld(t) ∈ F(A), d > 0}
A◦ = {t : askd(t) ∈ F(A), d > 0}

A− = {t : getd(t) ∈ F(A), d > 0}
A• = {t : naskd(t) ∈ F(A), d > 0}
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These sets are useful to characterize which agent may fail on some stores. An
agent fails if it is not able to do any internal step, nor to compute a primitive,
nor to do a temporal step. This is the case of an agent A for which F(A) contains
only obsolete primitives (with 0 as duration) or ask, get, nask primitives on a
store that does not allow any of them to fire. Note that if an ask and a nask
primitive in F(A) have the same token as argument ( i.e. A◦ ∩ A• is not empty)
the agent A is computable whatever the store is. Similarly if A− ∩ A• is not
empty, the agent is always able to compute one primitive whatever the store is.

Proposition 1. Let A be an agent. There exists a store on which it cannot fire
any computational transition iff the following three conditions hold: (i) A+ = ∅,
(ii) delay(0) �∈ F(A) and (iii) (A◦ ∪ A−) ∩ A• = ∅.

Proof. An induction on the syntactic structure of A establishes that for any
agent A, store σ and time u, there exist an agent B and a store ρ satisfying
〈A | σ〉u → 〈B | ρ〉u if and only if one of the five following cases occurs.

1. there exist t ∈ Stoken, d > 0 such that telld(t) ∈ F(A)
2. there exist t ∈ Stoken, d > 0 such that askd(t) ∈ F(A) and t ∈ σ∗

3. there exist t ∈ Stoken, d > 0 such that getd(t) ∈ F(A) and t ∈ σ∗

4. there exist t ∈ Stoken, d > 0 such that naskd(t) ∈ F(A) and t �∈ σ∗

5. delay(0) ∈ F(A)

where σ∗ denotes the multisets of the tokens occurring in σ without their sub-
script duration. Conversely, A is unable to fire a computational step on the store
σ at time u if and only if all these conditions are falsified. Therefore, for a given
agent A, there exist a store σ and a time u satisfying 〈A | σ〉u �→ if and only
if it is possible to provide a store σ and a time u satisfying the five following
conditions: (1) A+ = ∅, (2) A◦ ∩ σ∗ = ∅, (3) A− ∩ σ∗ = ∅, (4) A• ⊆ σ∗, (5)
delay(0) �∈ F(A). Conditions (1) and (5) are directly satisfied by an agent A
failing on a store. As F(A) is finite, conditions (2) to (4) express a finite set of
conditions which is always satisfiable but in case a token has both to be and not
to be in the store, i.e. if (A◦ ∪ A−) ∩ A• �= ∅.

Definition 12. Let A be an agent. We denote by A ↓ the existence of a store
on which A fails.

Proposition 2. Let A be an agent. It cannot fire any transition on any store
iff A ↓ and A ��

Proof. On the one hand, the condition A ↓ occurs if and only if F(A) only
contains ask, get and nask primitives. On the other hand, the condition A ��
occurs if and only if none of the ask, get, nask or delay primitives in F(A) have
a positive duration. The conjunction of the two conditions occurs then if and
only if F(A) involves only ask0, get0 and nask0 primitives, and therefore, if and
only if it is unable to fire any transition on any store.

The transition system of figure 1 can be rephrased as a transition system where
computation steps are reformulated as their corresponding events. For instance,
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rules for primitives

(T)
d > 0

telld(t)
t+
d−−→ E

(A)
d > 0

askd(t)
t◦
−→ E

(N)
d > 0

naskd(t)
t•
−→ E

(G)
d > 0

getd(t)
t−
−−→ E

(D) delay(0)
τ−→ E

compositional rules

(S)
A

a−→ A′, a �= ν

A ; B
a−→ A′ ; B

(P)

A
a−→ A′, a �= ν

A || B
a−→ A′ || B

B || A
a−→ B || A′

(C)

A
a−→ A′, a �= ν

A + B
a−→ A′

B + A
a−→ A′

(R)
gX

a−→ A′, a �= ν

X
a−→ A′

temporal rule

(Ti)
A �= E,A �, A ↓

A
ν−→ A−

Fig. 2. Tagged transition system for L

the label t+d is used to indicate the addition of the token t with duration d by
the computation of a telld(t) primitive. The resulting tagged transition system
is described in figure 2.

A first relation between the two transition systems is easy to establish.

Proposition 3. Let A be an agent of L, A
ν−→ if and only if there are a store σ

and a time u such that 〈A | σ〉u �.

The computation of an agent may be defined as a sequence of events. As for
the semantics Oh, a computation may be infinite or finite and, in that latter
case, terminated by the symbol δ+ to denote a successful termination or by the
symbol δ− to denote a deadlock computation.

The ability to actually perform a sequence of events depends on the contents of
the store. For instance, a t◦ event may only occur on stores containing the token
t. Conversely a t• event may only occur on stores that contain no occurrence
of t. Similarly, event ν can only occur on stores on which the agent is blocked.
However, as described until now, the temporal event ν does not contain enough
information to decide whether it can be fired on a given store. From now on,
we associate with a temporal step ν two sets F and G in order to indicate
respectively which tokens have to be present and absent from the store in order
to allow a transition to take place. The careful reader will directly notice the



124 J.-M. Jacquet and I. Linden

extension made with respect to the failure set semantics discussed in the previous
section.

Definition 13. Define the set of the tagged temporal events Stevent as follows

Stevent = {t+d , t◦, t•, t− : t ∈ Stoken} ∪ {τ} ∪ {νF
G : F, G ⊆ Stoken}

A functional interpretation of the events allows to relate them with respect to
the corresponding effects on stores.

Definition 14. For any event e of Sevent we define a partial function fe :
Ststore × Stime �→ Ststore × Stime as follows: for any store σ, any time u

ft+
d
(σu) = (σ ∪ {td})u

ft◦((σ ∪ {td})u) = (σ ∪ {td})u

ft•(σu) = σu if there is no d such that td ∈ σ
ft−(σ ∪ {td})u = σu

fτ (σu) = σu

fνF
G

(σu) = σ−
u+1 if G ⊆ σ∗ and F ∩ σ∗ = ∅

where σ∗ denotes the set of the tokens occurring in σ without their subscript
duration.

The following lemma already establishes a link between the two transition systems.

Lemma 1. For any agents A and B, any stores σ and ρ and any time u, one
has

1. 〈A | σ〉u → 〈B | ρ〉u iff there is e ∈ Sevent \ {ν} such that A
e−→ B and

ρu = fe(σu)
2. 〈A | σ〉u � iff for all e ∈ Sevent \ {ν} the fact that A

e−→ implies that fe(σu)
is undefined

3. 〈A | σ〉u � iff for all e ∈ Sevent \ {ν} the fact that A
e−→ implies that fe(σu)

is undefined and that A
ν−→

4. 〈A | σ〉u ��→ iff there is no e ∈ Sevent such that A
e−→

Proof. The proof of the first property is obtained by induction on the syntax of
agents, first for guarded ones and then on arbitrary ones. The second and third
properties result directly from the first property. Finally, the fourth property
occurs if and only if F(A) contains only ask0, get0 and nask0 primitives, i.e. iff
A �= E, A ↓ and A ��.

5 Refinement

5.1 Auxiliary Notions

We are now in a position to define our notion of refinement. To make our theory
more general, we introduce a hiding operator ΔT whose purpose is to hide some
tokens as local details, simply observed as τ steps. The rules to be added to
the tagged transition system of figure 2 are given in figure 3. Some auxiliary
notations will also be needed.
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rules

(Δ1)
A

a−→ A′, a ∈ events(T ) ∪ {ν}
ΔT A

a−→ ΔT A′

(Δ2)
A

a−→ A′, a �∈ events(T )

ΔT A
τ−→ ΔT A′

Fig. 3. Tagged transition system for ΔT A

Definition 15. For any agent A and A′ and any event a we denote

1. A ⇒ A′ whenever there are agents Ai for i = 1, . . . , n such that A
τ−→ A1

τ−→
. . .

τ−→ An
τ−→ A′

2. A ⇒a A′ whenever there are agents Ai for i = 1, . . . , n such that A
τ−→ A1

τ−→
. . .

τ−→ An
a−→ A′

3. A ⇒ν A′ whenever there are agents Ai for i = 1, . . . , n such that A
τ−→ A1

τ−→
. . .

τ−→ An
ν−→ A′

4. A ⇒ω whenever there is an infinite sequence of agents Ai for i ∈ N such
that A

τ−→ A1
τ−→ . . .

τ−→ Ai
τ−→ . . .

Similarly, for any agents A and A′, any set of token T and any event a we
denote

1. ΔT A ⇒ ΔT A′ whenever there are agents Ai for i = 1, . . . , n such that
ΔT A

τ−→ ΔT A1
τ−→ . . .

τ−→ ΔT An
τ−→ ΔT A′

2. ΔT A ⇒a ΔT A′ whenever there are agents Ai for i = 1, . . . , n such that
ΔT A

τ−→ ΔT A1
τ−→ . . .

τ−→ ΔT An
a−→ ΔT A′

3. ΔT A ⇒ν ΔT A′ whenever there are agents Ai for i = 1, . . . , n such that
ΔT A

τ−→ ΔT A1
τ−→ . . .

τ−→ ΔT An
ν−→ ΔT A′

4. ΔT A ⇒ω whenever there is an infinite sequence of agents Ai for i ∈ N such
that ΔT A

τ−→ ΔT A1
τ−→ . . .

τ−→ ΔT Ai
τ−→ . . .

5.2 Refinement

A refinement relation is defined as follows.

Definition 16. A relation R on Le × P(Stoken) × Le is a refinement relation
iff any triple (I, T, S) in R satisfies the following properties

1. tokens(S) ⊆ T
2. for any event a and agent I ′ such that ΔT I ⇒a ΔT I ′ there is some S′ in Le

such that S ⇒a S′ with (I ′, T, S′) ∈ R.
3. for any agent I ′ such that ΔT I ⇒ν ΔT I ′ there is some S′ such that S ⇒ν S′

with (I ′, T, S′) ∈ R.
4. ΔT I ⇒ω implies S ⇒ω.
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5. ΔT I ⇒ ΔT I ′ �→ implies S ⇒ S′ �→, for some agents I ′ and S′

6. ΔT I ⇒ ΔT E implies S ⇒ E

where the transition rules for ΔT A are provided by figure 3.

In this definition, it is worth observing that an interaction of the implementa-
tion I with the store has to be a possible interaction of the specification S with
the store. Similarly, temporal events of the implementation have to be temporal
events made by the specification. But these are not the only required properties.
The ability of actions by the specification has to be preserved. This is expressed
in conditions 6, 5 and 4 associated with condition 2, by the fact that termi-
nation, failure or zeno behavior of the implementation are acceptable only if
they respectively correspond to termination, failure and zeno behavior of the
specification.

Example 3. To illustrate the above definition, let us reconsider the producer
Prod of example 1:

Prod = tell2(i) ; delay(5) ; Prod

Assume that the production of item i is actually more complex and consists
in producing two parts, say ii and iii, from which i is obtained by a special
composition. Focussing on the interactions only, we may code this behavior by
replacing the action tell2(i) by an agent Aux defined as follows:

Aux = (Prod ii || Prod iii) ; Composer

Prod ii = tell1(ii)
Prod iii = tell1(iii)

Composer = (get1(ii) || get1(iii)) ; tell2(i)

Call Prod aux the agent Prod obtained by replacing tell2(i) by Aux, namely

Prod aux = Aux ; delay(5) ; Prod aux

Obviously, Prod and Prod aux are not equivalent since, for instance, the com-
putation of Prod aux makes the item ii appear and not that of Prod. However,
if we regard the production and consumption of the items ii and iii as details,
we may say that Prod aux is a more complex version of Prod. Technically,
Prod aux is said to refine Prod. It is also worth observing from the example
that a strict respect of the timing has to be preserved. For instance, defining
Composer as

Composer = (get1(ii) || get1(iii)) ; delay(1) ; tell2(i)

would not be correct since then Cons in parallel with Prod aux would miss the
item i and would not be able to consume it at all (in contrast to what happened
in example 1).
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As in traditional concurrency theory, many refinement relations may be de-
fined so that, as usual, we shall focus now on the maximal one defined as the
union of all the refinement relations.

Definition 17. The refinement relation � is the union of all the refinement
relations on Le × P(Stoken) × Le. Moreover, for the ease of reading, we write
A �T S whenever the triple (A, T, S) is in �.

5.3 Properties

Proposition 4. For any agents A,B,C of Le and any T set of tokens,

1. if tokens(A) ⊆ T , then A �T A
2. if tokens(A) ⊆ T , then A �T A + A
3. if tokens(A) ⊆ T , then A + A �T A
4. if tokens(B) ∪ tokens(C) ⊆ T , if A �T B and if B �T C then A �T C
5. if A ⇒ B and if A �T S then B �T S.

Proof. The first property is obtained by observing that the relation R on Le ×
P(Stoken) × Le defined as follows R = {(A, T, A) : tokens(A) ⊆ T } is a refine-
ment relation. It is then included in �.

Properties 2 to 5 are direct consequences of property 1, by observing that
inclusion of the set of tokens and the five required properties are satisfied.

Definition 18. An agent A of L is said to be deadlock free iff its operational
semantics Oh does not contain any failing computations.

An important property is that an agent refining a deadlock-free specification is
also deadlock-free.

Theorem 1 (deadlock-freeness preservation). For any agents A and S of
L such that A �T S, if S is deadlock-free, then A is also deadlock-free.

Proof. The proof is established by contradiction. Let s be a deadlocking history
of Oh(A). This history can be written s = σ1

u1
. · · · .σn

un
.δ− for some stores σi(i =

1, · · · , n) and times ui(i = 1, · · · , n) with σ1
u1

= ∅1. One then has, for a sequence
of agents Ai(i = 1, · · · , n) of Le with A1 = A,

〈A1 | σ1〉u1 �→ · · · �→ 〈An | σn〉un ��→ .

Proposition 3 and lemma 1 provide then a sequence of events ei(i = 1, · · · , n−1)
of Sevent such that

Ai
ei−→ Ai+1 and σi+1

ui+1
= fei(σ

i
ui

) for i = 1, · · · , n − 1.

Moreover, thanks to lemma 1, as 〈An | σn〉un ��→, the agent An is not able to fire
any tagged transition. According to the transition system of figure 3, one has
then for any i = 1, · · · , n − 1, ΔT Ai

ei−→ ΔT Ai+1 or ΔT Ai
ν−→ ΔT Ai+1.



128 J.-M. Jacquet and I. Linden

Let us now define the subsequence of the events preserved by the filter, i.e.
those events in T ∪ {ν}. Formally, it is provided by the subsequence ejk

(k =
1, · · · , m) such that j0 = 1 and ΔT Ajk

⇒ejk+1 ΔT Ajk+1 .
The definition of the refinement provides a sequence of agents Sk(k=1, · · · , m)

with S1 = S, such that Sk ⇒ejk+1 Sk+1. Moreover, as ΔT Ajm ⇒ ΔT An �−→, there
is some Sm+1 such that Sm ⇒ Sm+1 �−→ . As fτ (ρ) = ρ for any store ρ, one has,
thanks to proposition 3 and lemma 1, for some agents S1

k, . . . , S
l(k)
k ,

〈Sk | ρk〉uk
→ 〈S1

k | ρk〉uk
→ · · · → 〈Sl(k)

k | ρk〉uk
�→ 〈Sk+1 | ρk+1〉uk+1

with ρk = σjk
∩ T for k = 1, · · · , m and

〈Sm | ρm〉um → 〈S1
m | ρm〉um → · · · → 〈Sm+1 | ρm〉um ��→

which concludes the proof.

The following lemma will help to establish the substitutability property.

Lemma 2. For any agents A, B and S of L and for any set of tokens T such
that A �T S and tokens(A) ∩ tokens(B) ⊆ T , one has

1. A ; B �T∪tokens(B) S ; B and B ; A �T∪tokens(B) B ; S
2. A + B �T∪tokens(B) S + B and B + A �T∪tokens(B) B + S
3. A || B �T∪tokens(B) S || B and B || A �T∪tokens(B) B || S

Proof. The proofs being similar we only establish here that for A ; B. Consider
the relation Raux defined as

{((A ; B), T ′, (S ; B)) : T ′=T∪tokens(B), tokens(A)∩tokens(B)⊆T, A �T S}

and let us establish that R =� ∪Raux is a refinement relation, in which case, as
it includes �, the relation R is the � relation itself.

Let (A ; B, T ′, S ; B) be an element of Raux, and T be a set of token such
that T ∪ tokens(B) = T ′, tokens(A) ∩ tokens(B) ⊆ T and A �T S. Let us
examine each of the six properties required in definition 16

1. The inclusion of the sets of tokens is direct from the definition of Raux.
2. Assume ΔT ′(A ; B) ⇒a ΔT ′(C). According to the transition system of

figure 3, three cases are possible.
case 1. C = A′ ; B with ΔT ′(A) ⇒a ΔT ′(A′) and A′ �= E. In this case, as
tokens(A) ∩ T ′ ⊆ T , one also has ΔT (A) ⇒a ΔT (A′). As A �T S, there is
then some S′ such that S ⇒a S′ and A′ �T S′. Therefore, according to the
definition of R the triple (A′ ; B, T ′, S′ ; B) is also in R. The conclusion
then follows from the fact that S ; B ⇒a S′ ; B.
case 2. C = B with ΔT ′(A) ⇒a ΔT ′(E). In this case, one similarly has
ΔT (A) ⇒a ΔT (E). As A �T S, one has then S ⇒a S′ and S′ ⇒ E. As
B �T ′ B, it is then direct that B �T ′ S′ ; B and (B, T ′, S′ ; B) is in R.
case 3. C = B′ with ΔT ′(A) ⇒ ΔT ′(E) and ΔT ′(B) ⇒a ΔT ′(B′). In this
case, one also has ΔT (A) ⇒ ΔT (E). As A �T S, one has S ⇒ E. Moreover,
as tokens(B) ⊆ T ′ one has B ⇒a B′. Therefore one has S ; B ⇒a B′ with
(B′, T ′, B′) in R which suffices.
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3. The case ΔT ′(A ; B) ⇒ν ΔT ′(C) is treated exactly as ΔT ′(A ; B) ⇒a

ΔT ′(C).
4. Assume ΔT ′(A ; B) ⇒ω. Two cases are to be distinguished.

case 1. ΔT ′(A) ⇒ω. In this case, one also has ΔT (A) ⇒ω and then S ⇒ω.
Therefore one has S ; B ⇒ω which suffices.
case 2. ΔT ′(A) ⇒ ΔT ′(E) and ΔT ′(B) ⇒ω. In this case, one also has
ΔT (A) ⇒ ΔT E and then S ⇒ E. Moreover, as tokens(B) ⊆ T ′, one has
B ⇒ω. Therefore one has S ; B ⇒ω which suffices.

5. Assume ΔT ′(A ; B) ⇒ ΔT ′(C) �−→. Two cases are to be distinguished.
case 1. C = A′ ; B and ΔT ′(A) ⇒ ΔT ′(A′) �−→. In this case, one also has
ΔT (A) ⇒ ΔT (A′) �−→ and then S ⇒ S′ �−→. Therefore one has S ; B ⇒
S′ ; B �−→ which suffices.
case 2. ΔT ′(A) ⇒ ΔT ′(E) and ΔT ′(B) ⇒ ΔT ′(C) �−→. In this case, one also
has ΔT (A) ⇒ ΔT (E) and then S ⇒ E. Moreover, as tokens(B) ⊆ T ′, one
has B ⇒ C �−→. Therefore one has S ; B ⇒ C �−→ which suffices.

6. Finally, assume ΔT ′(A ; B)⇒ΔT ′ (E). This situation occurs only if ΔT ′(A)⇒
ΔT ′(E) and ΔT ′(B) ⇒ ΔT ′(E). In this case, on the one hand, as tokens(A)∩
T ⊆ T , one also has ΔT (A) ⇒ ΔT (E) and S ⇒ E. On the other hand, as
tokens(B) ⊆ T ′, one has B ⇒ E. Therefore S ; B ⇒ E which suffices.

Definition 19. Let � be a fresh symbol. Define the set of contexts Scontext by
the following rule where A represents an agent.

C ::= � | A | C ; A | A ; C | C || A | A || C | C + A | A + C

The application of a context C to an agent B is defined as the new agent obtained
by replacing the place holder � in C, if any, by B. This is subsequently denoted
as C[B].

Proposition 5. Let S be a specification and A an agent refining S with respect
to T . For any context C[.] such that tokens(C) ∩ tokens(A) ⊆ T , then C[A]
refines C[S] with respect to T ∪ tokens(C).

Proof. The proposition is established by using lemma 2 and a simple induction
on the structure of the context.

Theorem 2. Let S be a specification and A an agent refining S with respect to
T . For any context C[.] such that tokens(C)∩tokens(A) ⊆ T , if C[S] is deadlock
free then C[A] is also deadlock free.

Proof. For any context C[.] such that tokens(C)∩ tokens(A) ⊆ T , proposition 5
ensures that C[A] �T∪tokens(C) C[S]. Proposition 1 then ensures that if C[S] is
deadlock free, then C[A] is also deadlock free.

6 Conclusion

Building upon previous work on timed coordination languages, this paper has
presented a novel notion of refinement for these languages which satisfies the
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substitutability property: if the implementation I refines the specification S and
if C[S] is deadlock free, for some context C, then C[I] is also deadlock free.

To our best knowledge, the article [28] is the only piece of work which has
developed a refinement theory in the context of coordination languages. However,
this work takes the complementary perspective of using a first order temporal
logic to write specifications and of employing an axiomatic semantics to derive
properties. Moreover, it uses a Prolog-like rule format for manipulating tuples.
As appreciated by the reader, our work is based on an algebraic perspective.
Accordingly, specifications and implementations are agents of the same language,
and are related thanks to an abstraction operator and a refinement relation.
Moreover, another family of coordination models, featuring Linda-like primitives,
traditional concurrent operators and time, are tackled.

Refinements have been studied for classical concurrent languages. We have
shown that trace refinement, underlying among others the B method ([2]), is
not suited for our purposes. Moreover, refinement based on failure sets, classi-
cally used for process algebras such as CCS ([23]) and CSP ([16]), is also not
adapted to our coordination context. We have thus refined the notion of refusal
sets by replacing actions by tokens to be present or absent from the shared
dataspace and have imposed restrictions on temporal transitions. The resulting
refinement relation has then been shown to be adequate to obtain the substi-
tutability property.

Because this property has a compositional flavor, it is expected that it will
help to scale model checking. Our future research will aim to contribute to this
area by building a tool similar to FDR ([26]) dedicated to our timed coordination
languages.
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Abstract. We suggest a Calculus for Mobile Ad Hoc Networks, CMAN.
A node in a network is a process equipped with a location, it may com-
municate with other nodes using synchronous spatially oriented broad-
cast where only the current neighbors receive the message. Nodes may
autonomously change their neighbor relationship and thereby change the
network topology. We define a natural reduction semantics and a reduc-
tion congruence as well as a labeled transition semantics and prove a
weak contextual bisimulation to be a sound and complete co-inductive
characterization of the reduction congruence. Finally, we apply CMAN

on a small example of a cryptographic routing protocol.

1 Introduction

The use of wireless networks is becoming more and more important due to the
increasing and widespread use of communicating mobile devices. The application
area for wireless networks is broad, spanning from ambient intelligence, wireless
local area networks, sensor networks, and cellular networks for mobile telephony.

Our work is devoted to a particular kind of wireless networks, the so called
Mobile Ad Hoc Networks (MANETS). MANETS are self organizing wireless net-
works without centralized access points or any other central control components.
Hence they do not contain a pre-deployed infrastructure for routing messages. An
ad hoc network may be formed when a collection of mobile nodes join together
and agree on how to route messages for each other over possibly multiple hops.

The communication primitive for wireless devices is message broadcast. How-
ever in contrast to the conventional technology in wired local area networks, say
the Ethernet, where broadcasted messages reach every node in the network, then
for wireless networks broadcast is spatially oriented meaning that messages will
only reach those nodes within the communication range (the cell) of the emit-
ting node. Another difference between wired and wireless network technology
is that interference is a much harder and severe problem in wireless systems.
Also, in wireless networks communication links between entities cannot always
be considered bidirectional.
� Supported by grant no. 272-05-0258 from the Danish Research Agency.
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Calculi for broadcast systems were first studied by Prasad in the work on the
CBS calculus [16] and later in a mobile setting by Ene and Muntean in the bπ
calculus [5], and by Ostrovsky, Prasad, and Taha in HOBS [15]. Recently wireless
broadcast systems have been studied by Nanz and Hankin in CBS# [13] and by
Merro in CMN [8]. In the former calculi broadcast scope is transitive in that if
two nodes P and Q both can communicate with a third node then P and Q can
also communicate with each other whereas this is not necessarily the case for
CBS# and CMN. The calculus CWS [9] by Mezzetti and Sangiorgi also studies
wireless broadcast but at a much lower level of abstraction, in particular they
take the phenomenon of interference into account.

Another characteristic of MANETS is that nodes may be mobile, not only do
they enter and leave the network, but also they autonomously change localities
and thereby change their connections and hence the topology of the network.
Mobility of processes has been addressed by many calculi, like π [11], Mobile
Ambients [3], Seal [4], and Homer [7], and some even take the notion of spatially
oriented communication into account like Mobile Ambients and Hennessy and
Riely’s Dπ [17]. However only very limited work has so far been devoted to
calculi for broadcast and mobility, like bπ and HOBS, and to our knowledge the
only reported work on calculi for spatially oriented broadcast and mobility is
CBS# and CMN.

The goal of our work is to define a Calculus for Mobile Ad Hoc Networks
(CMAN) that facilitates mobility and spatially oriented broadcast. As in CMN
we adopt that communication between nodes in a network is carried out on
bidirectional links, and further we assume that nodes in a network may move
arbitrarily as in both CBS# and CMN. We shall refrain from dealing with in-
terference in this paper.

The neighborhood relation in CBS# is dealt with at the semantic level, the
semantics is parameterized and quantified over a set of configurations (graphs).
In CMN and CWS the neighborhood relation is taken care of by a metric function
that tells if two physical locations are close enough to communicate. Here instead
we choose logical locations and follow to some extent the ideas by De Nicola et
al. [14] letting the topology be explicitly part of the network syntax and letting
the topology change as a consequence of computational steps. We choose as a
key design principle of our calculus that the specification of a node’s control
behaviour must be independent of and not intermixed with its neighborhood
coordination as this would render models in the calculus unnecessarily complex.

We follow the approach from CBS# and CMN (and CWS) letting broadcast
be spatially oriented, but in contrast to CBS#, where broadcast messages may
be received after a change of network topology, we let broadcast as in CMN be
atomic in the sense that all neighbors at the time of the broadcast, and only
those, can listen to and receive the broadcasted message. Another similarity
with CMN is that we allow broadcasted messages to be lost for some potential
recipients. However, opposite to CMN where broadcast is carried out on chan-
nels that may be restricted, we let broadcasted messages be transmitted on an
unrestricted medium.
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One important factor of motivation is that we want to be able to model
cryptographic routing protocols for MANETS, like ARAN [18]. For that reason
we choose to adopt a data (term) language as the one known from the Applied
π-Calculus [2].

A node, �p�σ
l , in our calculus is modeled as a (sequential) process p located at

some (logical) location l and connected to other nodes at locations σ. A location
is an abstract name that cannot be referred by the node’s process. Nodes put
together in parallel constitute a network, say

P = �p�m
l ‖ �q�l

m ‖ �r�n ,

where the current topology is that the node at location l, �p�m
l , is connected to

the node at location m, �q�l
m, (and vice versa). The node at location n is dis-

connected from any other node. Mobility is obtained by a simple reduction, say
that the node at location n autonomously moves and becomes (bidirectionally)
connected to the node at location l,

�p�m
l ‖ �q�l

m ‖ �r�n ↘ �p�mn
l ‖ �q�l

m ‖ �r�l
n . (1)

Similarly, nodes may arbitrarily disconnect, say

�p�mn
l ‖ �q�l

m ‖ �r�l
n ↘ �p�n

l ‖ �q�m ‖ �r�l
n . (2)

A node containing a process 〈t〉.p may broadcast t and a node with (x).q can
receive a broadcasted message. Synchronous spatially oriented broadcast is real-
ized by a broadcast reduction labelled by the location of the emitting node, say

�〈t〉.p�nm
l ‖ �(x).q�l

m ‖ �(x).r�l
n ↘ l �p�nm

l ‖ �q{t/x}�l
m ‖ �r{t/x}�l

n , (3)

where the node at location l broadcasts to all nodes to which it is connected in
the current topology, or similarly

�〈t〉.p�nm
l ‖ �(x).q�l

m ‖ �(x).r�l
n ↘ l �p�nm

l ‖ �(x).q�l
m ‖ �r{t/x}�l

n , (4)

where the broadcasted message to one of l’s neighbors, in this case the node
at location m, is lost. As a special case, a disconnected node in a network may
broadcast without anyone listening

�〈t〉.p�l ‖ �(x).q�m ‖ �(x).r�n ↘ l �p�l ‖ �(x).q�m ‖ �(x).r�n . (5)

A novel contribution of our work is that we choose to work with a family of
broadcast reductions, one for each locality in the network. This allows an external
observer to observe the locality (node) in charge of the synchronous broadcast.

However, since it may be unrealistic for an observer to cover the whole network
we introduce the notion of a hidden node, i.e. a node with the location name
restricted. A hidden node, say νk.�〈t〉.r�k , may connect to other nodes extruding
its location name,

�(x).p�m
l ‖ �q�l

m ‖ νk.�〈t〉.r�k ↘ νk.(�(x).p�mk
l ‖ �q�l

m ‖ �〈t〉.r�l
k) , (6)
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and subsequently send (receive) messages to (from) its neighbors, e.g.

νk.(�(x).p�mk
l ‖ �q�l

m ‖ �〈t〉.r�l
k) ↘ νk.(�p{t/x}�mk

l ‖ �q�l
m ‖ �r�l

k) , (7)

but the emission from a hidden node cannot be observed by an external observer,
hence the reduction (7) is not a broadcast reduction.

As in the seminal work on barbed bisimulation [12,10] we strive to have an as
simple as possible reduction semantics and to allow an external global observer
to have minimal observability, in our case: reductions ↘ l for broadcast, and
reductions ↘ for connections, disconnections, and broadcast from hidden nodes.
Similar to the semantics of CMN and CBS# we choose to abstract from ob-
servability of node mobility. Indistinguishability under these observations gives
rise to a natural equivalence which in turn induces a natural congruence over
networks, i.e. the equivalence in all contexts closed under structural congruence.
In the present paper we show how to obtain a labeled transition semantics such
that (early contextual) weak bisimulation is a sound and complete co-inductive
characterizations of the reduction congruence. Due to lack of space we focus on
weak congruence and bisimulation, but the soundness and completeness results
carry naturally over to strong congruence and bisimulation.

The paper is organized as follows: The language of CMAN is presented in
Section 2. The reduction semantics and the natural reduction congruence follows
in Section 3. In Section 4 we provide the labeled transition system semantics and
give the co-inductive characterization of the reduction congruence. Then, for a
sub-calculus of CMAN, in Section 5 we demonstrate a considerably simpler
characterization of the reduction congruence. We end the paper with a simple
example of a cryptographic routing protocol and a conclusion.

2 Syntax

As already touched upon above a network in CMAN consists of nodes composed
in parallel, some nodes may be hidden, and each node is a sequential process at
some abstract location connected to other locations.

Our process definition is similar to the one in [1], a variant of the Applied
π-Calculus (Aπ) [2]. Aπ is a simple extension of the π-Calculus [11] with value
passing, primitive functions, and term equations.

Terms. Terms are defined relative to an infinite set of names N ranged over
by n, an infinite set of variables X ranged over by x, and two disjoint finite
sets, F and G, of constructor and destructor symbols ranged over by f and g
respectively. Formally, destructors are defined to be partial functions, i.e. the
application of a destructor to a tuple of terms is only defined in case the tuple
matches one of the destructors defining equations (we refer the reader to [1]).

Then the set of terms is defined as follows:

s, t ::= n | x | f(t1, . . . , tk) | (t1, . . . , ti) ,

where f is a constructor symbol with arity k. We let T denote the set of all
terms with no variables.
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Processes. As mentioned above, processes in CMAN are based on the process
constructs from Aπ. We choose although to omit the notion of a channel, letting
everyone able to listen be a potential receiver of the broadcasted message.1 We
assume a set of process variables Z ranged over by z. The set of processes is
defined by the grammar:

p, q ::= 0 | 〈t〉.p | (x).p | if (t = s) then p else q | let x = t in p |
let x = g(t1, . . . , ti) in p else q | νn.p | z | rec z.p .

The process 0 is the inactive process. 〈t〉.p may output t and in so doing be-
come p. The process (x).p binds x in p and may input a term t and replace
all free occurrences of x in p by t. The process if t = s then p else q is a
standard conditional. The local definition let x = t in p binds the variable x
in p and executes p with all free occurrences of x replaced by t. The process
let x = g(t1, . . . , tk) in p else q also binds x in p, if the destructor application
g(t1, . . . , tk) evaluates to a term t then x is bound to t in p, otherwise the process
becomes q. The process νn.p binds the name n in p and restricts n to p. Finally,
rec z.p is a recursively defined process where rec z binds z in p. 2

We let p{t/x} denote the process p where any free occurrence of x is sub-
stituted by t (taking care that names in t are not bound in p by the use of
α-conversion if needed). Likewise, p{q/z} denotes the process p where z is sub-
stituted by q. The set of free names in a process p is denoted by fn(p), and its
free variables are denoted by fv (p). A process p is (variable) closed if fv(p) = ∅.
P denotes the set of all closed processes and as usual we identify processes up
to α-equivalence.

Networks. Assume a finite set of location names L ranged over by l and k. We
assume N ∩ L = ∅ and let m range over N ∪ L. We let σ range over sets of
location names and let ε denote the empty set. The set of networks is defined by
the grammar:

P, Q, R ::= 0 | �p�σ
l | νm.P | P ‖ Q .

The network 0 denotes the empty network. �p�σ
l is a singleton network with

the node at location l containing the process p and connected to nodes in σ.
νm.P is the network P with the (location or term) name m hidden, and finally
P ‖ Q is the parallel composition of the two networks P and Q. 3 As a shorthand
we allow to write Πi∈IPi for the parallel composition of all networks Pi, i ∈ I.

We let the hiding operator have higher precedence than parallel composition.
We write �p�l instead of �p�ε

l . When m̃ = {m1, . . . , mi} we write m̃m for m̃∪{m}
and we write νm̃ instead of νm1 . . . νmi. We write σl instead of σ ∪ {l} and let
σσ′ denote the union of disjoint sets σ and σ′.
1 Another approach would be to broadcast on a given channel as in CMN and bπ.
2 Notice, that in the present version of CMAN we have left out parallel composition

and replication of processes.
3 As in [14] we have no operator for having an unbounded number of network nodes.
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The set of free names in a network P , denoted by fn(P ), is defined as expected
and so is the set of free variables fv(P ). We let P{t/x} denote the network P
where all free occurrences of x in P is substituted by t (taking care that names
in t are not bound in P using α-conversion if needed). The set of free locations
in a network P , denoted by fl(P ), is inductively defined by: fl(�p�σ

l ) = {l},
fl(νm.P ) = fl(P )\{m}, and fl(P ‖ Q) = fl(P )∪fl(Q). The set of free connections
in a network P , denoted by fc(P ), is inductively defined by: fc(�p�σ

l ) = σ,
fc(νm.P ) = fc(P ) \ {m}, and fc(P ‖ Q) = fc(P ) ∪ fc(Q). Finally, the set of free
locations and connections in a network P is denoted by flc(P ) = fl(P ) ∪ fc(P ).

As a syntactical convention we allow to write Pl⊕k meaning that the node in
P (if any) with location name l is connected to a node with location name k,
and symmetrically node k in P (if any) is connected to l. Formally we define
Pl⊕k inductively by: 0l⊕k = 0, and (�p�σ

l )l⊕k = �p�σk
l , (�p�σ

k )l⊕k = �p�σl
k , and

(�p�σ
m)l⊕k = �p�σ

m if m �∈ {l, k}, (P ‖ P ′)l⊕k = Pl⊕k ‖ P ′
l⊕k, (νm.P )l⊕k =

νm.(Pl⊕k) if m �∈ {l, k}. Similarly, we let Pl�k denote the network where k is
not connected to node l, and vice versa. We let l ⊕ k and l � k have higher
precedence than the hiding operator.

Well-formedness. We say that a network P is well-formed if each node in
P is not connected to itself and if each free location in P is unique. Formally,
well-formedness is inductively defined by:

– �p�σ
l is well-formed if l �∈ σ.

– P ‖ Q is well-formed if P and Q are well-formed and if fl(P ) ∩ fl(Q) = ∅.
– νm.P is well-formed if P is well-formed.

In the sequel we consider only the set of well-formed networks and we identify
networks up to alpha-equivalence. The set of well-formed and variable closed
networks is denoted by N.

3 Reduction Semantics

We provide our calculus with a reduction semantics defined through the use of
evaluation contexts, structural congruence, and reduction rules.

As usual we say that a binary relation R on P is a congruence if p R q implies
C(p) R C(q) for any process context C. Structural congruence on P, ≡P, is
the least congruence and equivalence relation that is closed under α-conversion
and the rules in Table 1. Likewise, we say that a binary relation R on N is a
congruence if P R P ′ implies νm.P R νm.P ′ for all m, and P ‖ Q R P ′ ‖ Q for
all Q with fl(Q) ∩ (fl(P ) ∪ fl(P ′)) = ∅. Structural congruence on N, ≡, is the
least congruence and equivalence relation that is closed under α-conversion and
the rules in Table 2.

Reduction Rules. We define a reduction ↘ l ⊆ N × N for each l ∈ L as
the least relation closed under structural congruence, parallel composition, and
satisfying the rules in Table 3. Also, we define ↘ ⊆ N × N as the least relation
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Table 1. Structural congruence, processes

let x = t in p ≡P p{t/x} if (t = t) then p else q ≡P p

if (t = s) then p else q ≡P q , if t �= s

let x = g(t1, . . . , ti) in p else q ≡P p{t/x} , if g(t1, . . . , ti) = t

let x = g(t1, . . . , ti) in p else q ≡P q , if g(t1, . . . , ti) not defined

Table 2. Structural congruence, networks

P ‖ 0 ≡ P P ‖ Q ≡ Q ‖ P (P ‖ P ′) ‖ P ′′ ≡ P ‖ (P ′ ‖ P ′′)

�p�σ
l ≡ �q�σ

l , if p ≡P q �νn.p�σ
l ≡ νn.�p�σ

l

νm.νm′.P ≡ νm′.νm.P νm.P ‖ Q ≡ νm.(P ‖ Q) , if m �∈ fn(Q) ∪ flc(Q)

closed under structural congruence, parallel composition, and restriction, and
satisfying the rules in Table 3. We let ↘∗ denote the reflexive and transitive
closure of ↘.

A reduction due to rule (con) in Table 3 signifies that a bidirectional connec-
tion within the network has taken place, and likewise a reduction due to (dis)
means that a disconnection has happened.

A reduction due to rule (brd) means that the node at location l synchronously
broadcasts a message to neighbors to which it is currently connected and which
are capable of listening. Notice that the rule (brd) captures that broadcast is
an atomic step, hence no node outside the range of the emitting node at the
time of transmission can ever receive the broadcasted message. Also note that
broadcasted messages may be lost, i.e. not only will neighbors to which l is con-
nected but which are not listening for sure lose the message, but also connected
neighbors that are listening are not guaranteed to receive the emitted message
as demonstrated by reduction (4) in the Introduction.

Rule (res) allows broadcasting from non-hidden localities to be observable,
and dually rule (hide) makes emission from hidden nodes unobservable. For
reduction examples we refer the reader to (1) – (7) in the Introduction.

Reduction Congruence. Based on the reductions above we introduce a nat-
ural weak congruence for CMAN. We say that a binary relation R on N is weak
reduction closed if whenever P R Q then P ↘ P ′ implies the existence of some
Q′ such that Q ↘∗ Q′ and P ′ R Q′, and P ↘ l P ′ implies the existence of some
Q′ such Q ↘∗↘ l↘∗ Q′ and P ′ R Q′.

Definition 1. A symmetric relation R on N is a weak reduction bisimulation
if it is weak reduction closed and if P R Q implies fl(P ) = fl(Q).

Our weak reduction bisimulation is an equivalence relation. It abstracts from
internal computation and connectivity, however we do not use barbs as for
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Table 3. Reduction rules

(con)
�p�σ

l ‖ �q�σ′
k ↘ �p�σk

l ‖ �q�σ′l
k

(dis)
�p�σk

l ‖ �q�σ′l
k ↘ �p�σ

l ‖ �q�σ′
k

(brd)
�〈t〉.p�σσ′

l ‖ Πm∈σ�(x).pm�σml
m ↘ l �p�σσ′

l ‖ Πm∈σ�pm{t/x}�σml
m

(res)
P ↘ l P ′

νm.P ↘ l νm.P ′ m �= l (hide)
P ↘ l P ′

νl.P ↘ νl.P ′

instance in [12], but instead make broadcasting from nodes be observable through
reductions of type ↘ l.

Definition 2. A relation R on N is a weak reduction congruence if it is a weak
reduction bisimulation and a congruence.

We let ∼= denote the largest weak reduction congruence.

4 Labeled Transition System Semantics

In order to give an alternative co-inductive characterization of the weak reduction
congruence, ∼=, we provide a labeled transition system semantics of our calculus.
We begin with the semantics for plain processes and proceed with the semantics
for networks.

Process Semantics. Let the set of process actions, AP, ranged over by λ be
defined by:

λ ::= (t) | νñ〈t〉
where t ∈ T . The action (t) describes that the term t is received by a process
and the action νñ〈t〉 denotes the emission of the term t with names in ñ bound.
If ñ = ∅ we write 〈t〉 instead of ν∅〈t〉. When λ = νñ〈t〉 we write νnλ for νñn〈t〉.
We let fn(λ) (bn(λ)) denote the bound (free) names in λ.

The operational semantics for processes is defined as a labeled transition sys-
tem (P, AP, →) where → ⊆ P × AP × P is the least set defined by the rules
in Table 4 and closed by ≡P. The rule (out) states that the process 〈t〉.p can
broadcast the term t. (in) states that (x).p can receive any term t and let it be
substituted for any free occurrence of x in p. The rule (rec) is the usual rule for
recursion, and (res) is the usual rule for restriction. The rule (open) takes care
of extrusion of restricted names.

Networks Semantics. The set of network actions A ranged over by α is defined
by:

α ::= β | γ β ::= l | lσνñ〈t〉 | lσ(t) | τ γ ::= l� | νl.l� | l  k | τ
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Table 4. Transition Rules, Processes

(out)
〈t〉.p 〈t〉−→ p

(in)
(x).p

(t)−→ p{t/x}
(rec)

p{rec z.p/z} λ−→ p′

rec z.p
λ−→ p′

(res)
p

λ−→ p′

νn.p
λ−→ νn.p′ n �∈ fn(λ) ∪ bn(λ) (open)

p
λ−→ p′

νn.p
νnλ−→ p′ n ∈ fn(λ)

where t ∈ T . Actions are grouped into broadcast and mobility actions ranged
over by β and γ respectively. The action l denotes that the node at location l
has completed a broadcast computation. The action lσνñ〈t〉 is an output action,
it means that the node at location l may broadcast the message t with names in
ñ bound to the nodes with locations in σ. The action lσ(t) is an input action,
meaning that t may be received from the node at location l by the nodes with
locations in σ. The action l� (νl.l�) means that the (hidden) node at location l
may move. Finally, the action lk indicates that the two nodes at locations l and
k respectively are disconnecting. As usual τ denotes an internal computation.

For convenience we write νm̃.l� for l� if m̃ = ∅, likewise if m̃ = {l} we write
νm̃.l� for νl.l�. We let bn(α) (fn(α)) denote the bound (free) names in α, and
we let bl(α) (fl(α)) denote the bound (free) locations in α.

The operational semantics for networks is defined by a labeled transition sys-
tem (N, A, →) where → ⊆ N×A×N is the least relation satisfying the rules in
Table 5 and 6, omitting the symmetric counterparts of the three rules (synch),
(par 1), and (par 2).

The rule (brd) in Table 5 states that a node at location l may broadcast its
message to any node with location in σ. Rule (lose) represents that broadcast
messages may be arbitrarily lost, nodes with locations in σ′ will not receive the
message broadcasted by l. Hence we may have:

P1 = �〈n〉.p�lm
k

klm〈n〉−→ �p�lm
k and P1

kl〈n〉−→ �p�lm
k .

The two rules (rec1) and (rec2) show how broadcasted terms may be received
by nodes, e.g. we may have:

Q1 = �(x).q�k
l ‖ �(x).r�k

m

klm(n)−→ �q{n/x}�k
l ‖ �r{n/x}�k

m = Q2 .

The actual synchronization between broadcast and reception of messages is
shown in (synch), for instance:

P1 ‖ Q1
kε〈n〉−→ �p�lm

k ‖ Q2 and P1 ‖ �(x).r�k
m

kl〈n〉−→ �p�lm
k ‖ �r{n/x}�k

m .

The rules (open1) and (close) make sure that extrusion of bound names is treated
properly, where (close) signals the completion of a broadcasting session. As an
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Table 5. Transition Rules, Network Broadcast

(brd)
p

νñ〈t〉−→ p′

�p�σ
l

lσνñ〈t〉−→ �p′�σ
l

(lose)
P

lσσ′νñ〈t〉−→ P ′

P
lσνñ〈t〉−→ P ′

(rec1)
p

(t)−→ p′

�p�σk
l

kl(t)−→ �p′�σ
l

(rec2)
P

lσ(t)−→ P ′ Q
lσ′(t)−→ Q′

P ‖ Q
lσσ′(t)−→ P ′ ‖ Q′

(close)
P

lενñ〈t〉−→ P ′

P
l−→ νñ.P ′

(hide)
P

l−→ P ′

νl.P
τ−→ νl.P ′ (open1)

P
lσνñ〈t〉−→ P ′

νn.P
lσνñn〈t〉−→ P ′

n ∈ fn(t) \ ñ

(synch)
P

lσσ′νñ〈t〉−→ P ′ Q
lσ′(t)−→ Q′

P ‖ Q
lσνñ〈t〉−→ P ′ ‖ Q′

ñ ∩ fn(Q) = σ ∩ fl(Q) = ∅

(par1)
P

β−→ P ′

P ‖ Q
β−→ P ′ ‖ Q

fl(β) ∩ fl(Q) = bn(β) ∩ fn(Q) = ∅

(res1)
P

β−→ P ′

νm.P
β−→ νm.P ′

m �∈ fl(β) ∪ fn(β) ∪ bn(β)

example of the result of an application of rule (open1) we may take:

P1
′ = νn.P1

klmνn〈n〉−→ �p�lm
k ,

and assuming n �∈ fn(Q1), taking care to avoid name clashing in the (synch)
rule, we may apply the rule (close) to obtain:

P1
′ ‖ Q1

k−→ νn.(�p�lm
k ‖ Q2) .

The rule (par 1) is a standard rule for concurrency, say:

Q1
kl(n)−→ �q{n/x}�k

l ‖ �(x).r�k
m ,

and beyond taking care to avoid name clash it implies for instance:

P1 ‖ �(x).r�k
m

klm〈n〉−→� ,

because m is a free location in both klm〈n〉 and �(x).r�k
m, hence the side condi-

tion in (par 1) enforces networks not to externally broadcast messages to nodes
it already contains. Likewise, (synch) enforces:

P1 ‖ Q1
km〈n〉−→� ,

because m ∈ fl(Q1).
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Table 6. Transition Rules, Network Mobility

(con1)
�p�σ

l
l	−→ �p�σ

l

(dis1)
�p�σk

l
l
k−→ �p�σ

l

(con2)
P

νm̃.l	−→ P ′ Q
νm̃′ .k	−→ Q′

P ‖ Q
τ−→ νm̃′m̃.(P ′ ‖ Q′)l⊕k

m̃ ∩ m̃′ = m̃ ∩ flc(Q) = m̃′ ∩ flc(P ) = ∅

(dis2)
P

l
k−→ P ′ Q
k
l−→ Q′

P ‖ Q
τ−→ P ′ ‖ Q′

(open2)
P

l	−→ P ′

νl.P
νl.l	−→ P ′

(res2)
P

γ−→ P ′

νm.P
γ−→ νm.P ′ m �∈ fl(γ) ∪ bl(γ)

(par2)
P

γ−→ P ′

P ‖ Q
γ−→ P ′ ‖ Q

bl(γ) ∩ flc(Q) = ∅

The rule (res1) is defined as usual, but (hide) is a new special rule added for
the same reason as the rule with the same name in Table 3, i.e. to hide broadcast
from hidden nodes. Hence for instance:

νk.(P1
′ ‖ Q1)

τ−→ νk.νn.(�p�lm
k ‖ Q2) ,

is the result of letting the hidden node at location k in P1
′ complete a broadcast

communication.
Mobility of nodes is obtained through the rules (con1) and (dis1) and their

respective synchronization rules (con2) and (dis2) in Table 6. The rule (con1)
states that a node at a free location l may connect to any other node as demon-
strated by the rule (con2). As an example:

�p�l
l�−→ �p�l , �q�k

k�−→ �q�k , and �p�l ‖ �q�k
τ−→ �p�k

l ‖ �q�l
k .

Dually, (dis1) states that a node at location l with a neighbor at location k may
disconnect from k and in so doing remove k from the set of connections of the
node. The mutual disconnection of bidirectionally connected nodes is taken care
of by the rule (dis2). For instance,

�p�k
l

l�k−→ �p�l , �q�l
k

k�l−→ �q�k , and �p�k
l ‖ �q�l

k
τ−→ �p�l ‖ �q�k .

Special care must be given to hidden nodes. The rules (open2), (par 2), and
(con2) allow the location names for hidden nodes to be properly extruded, in
particular taking care to avoid clashes between bound location names and free
locations and connections. As an example, assuming l �= k,

νl.�p�l
νl.l�−→ �p�l and νl.�p�l ‖ �q�k

τ−→ νl.(�p�k
l ‖ �q�l

k) .



A Calculus for Mobile Ad Hoc Networks 143

Illustrating the use of (par 2) we may have:

νl.�p�l ‖ �q�k
νl.l�−→ �p�l ‖ �q�k ,

and from (con2) we may then get if m �∈ {l, k},

νl.�p�l ‖ �q�k ‖ νm.�r�m
τ−→ νm.νl.(�p�m

l ‖ �q�k ‖ �r�l
m) .

The rule (res2) is defined as usual.
The close correspondence between the reduction semantics and the labeled

transition system semantics is demonstrated by the lemmas below.

Lemma 1. P
τ−→≡ P ′ iff P ↘ P ′.

Lemma 2. P
l−→≡ P ′ iff P ↘ l P ′.

Bisimulation Semantics. Below we give a co-induction characterization, a
weak bisimulation, of the weak reduction congruence ∼=. Our characterization
follows the contextual style as found in e.g. [4,14].

Let τ=⇒ be the reflexive and transitive closure of τ−→ and define l=⇒ by
τ=⇒ l−→ τ=⇒.

Definition 3. A symmetric relation R on N is a weak bisimulation if P R Q
implies fl(P ) = fl(Q) and for all p ∈ P,

1. if P
τ−→ P ′ then ∃Q′. Q

τ=⇒ Q′ and P ′ R Q′

2. if P
l−→ P ′ then ∃Q′. Q

l=⇒ Q′ and P ′ R Q′

3. if P
lσ(t)−→ P ′ then ∀σ′. l �∈ σ′, ∃Q′.

Q ‖ �〈t〉.p�σσ′

l
l=⇒ Q′ and P ′ ‖ �p�σσ′

l R Q′

4. if P
νm̃.l�−→ P ′ then ∀ k. k �∈ fl(P ) ∪ m̃. ∀σ. σ ∩ m̃k = ∅. ∃Q′.

Q ‖ �p�σ
k

τ=⇒ Q′ and νm̃.(P ′ ‖ �p�σ
k)l⊕k R Q′

5. if P
l�k−→ P ′ then ∀σ. k �∈ σ. ∃Q′.

Q ‖ �p�σl
k

τ=⇒ Q′ and P ′ ‖ �p�σ
k R Q′

The notion of weak bisimulation in a broadcasting framework as defined by
Definition 3 is a key contribution of this paper and deserves some comments.
Requirement 1 in the definition is standard. Requirement 2 demands that the
completion of a broadcast computation by a node at some visible location l
in P must be matched by a completed broadcast communication by a node
at the same location l in Q, but probably preceded and followed by internal
computations. Requirement 3 states that if nodes at locations σ in P may receive
t from a broadcasting node at location l in the environment, then Q composed
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with any such node may let the node emit t and complete a (weak) broadcast
communication with Q, and in so doing Q and the node together become a
network that can match the reception of t by the nodes at σ in P . Requirement
4 states that if a (possibly hidden) node in P (bidirectionally) connects to an
external node at some fresh location k then Q an the new external node can
make a number of internal computations and then match P being connected
to the node at location k. Finally, requirement 5 demands that if the node at
location l in P is about to disconnect from location k in its environment, then
Q in an environment with a single node at location k that is connected to l can
make internal computations, and match P and the node at location k together
in parallel when the two are disconnected.

Notice that the three latter requirements in Definition 3 are contextual be-
cause they are demands on the network execution environment to provide exter-
nal input of data terms, to connect with new fresh localities, and to disconnect
from environmental locations respectively.

Let ≈ be the largest weak bisimulation. In the full version of this paper we
show that:

Theorem 1. ≈ is a congruence.

Because ≈ is a congruence it’s sufficient to establish that ≈ is weak reduction
closed in order to show ≈ ⊆ ∼=, this follows from Lemma 1 and 2. Then in order
to show ≈ = ∼= it just remains showing ∼= to be a weak bisimulation.

Theorem 2. ≈ = ∼=.

Because the establishment of bidirectional connections and deconnections are
unobservable in a weak bisimulation semantics the following lemma holds:

Lemma 3. If l, k ∈ fl(P ) then Pl⊕k ≈ Pl�k.

It is not difficult to show that ≡ is a weak bisimulation, and as an example we
may show that the inactive network is weak bisimilar to a hidden node with an
inactive process, i.e. 0 ≈ νk.�0�k, because R ∪ R−1 is a weak bisimulation up
to ≡ where

R= {(νm̃.(0 ‖ P ), νm̃k.(�0�k ‖ P )σ⊕k) | m̃ ∪ σ ⊆ fl(P ), k �∈ fl(P )}

letting Pσ⊕k be defined by (. . . (Pl1⊕k) . . .)li⊕k whenever σ = {l1, . . . , li}.

5 Connection Closed Networks

The definition of weak bisimulation is contextual and therefore it is hard to
prove bisimulation equivalence between networks. For the class of connection
closed networks however it turns out that our framework becomes significantly
simpler.

We say that a network P is connection closed if each node in P is connected
only to other nodes within P , i.e. if fc(P ) ⊆ fl(P ). For instance, all networks
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in the examples (1) – (7) in the Introduction are connection closed, but �0�m
l is

not. We let Nc denote the subset of N of connection closed networks.
Let a binary relation on Nc be a c-congruence if it is closed by hiding and

by (well-formed) parallel composition of networks in Nc, and let structural c-
congruence be the least c-congruence and equivalence relation on Nc closed
under α-conversion and the rules in Table 2. As in Definition 2 we define a weak
equivalence abstracting from internal computation, but now only over connection
closed networks.

Definition 4. A symmetric relation R on Nc is a weak reduction c-congruence
if it is weak reduction closed, a c-congruence, and if P R Q implies fl(P ) =
fl(Q).

We let ∼=c be the largest weak reduction c-congruence.
Like weak reduction congruence was characterized by weak bisimulation we

may also characterize weak reduction c-congruence by a co-inductively defined
bisimulation. Let Rk range over networks in Nc where k ∈ fl(Rk).

Definition 5. A symmetric relation R on Nc is a weak c-bisimulation if P R Q
implies fl(P ) = fl(Q) and

if P
τ−→ P ′ then ∃Q′. Q

τ=⇒ Q′ and P ′ R Q′

if P
l−→ P ′ then ∃Q′. Q

l=⇒ Q′ and P ′ R Q′

if P
νm̃.l�−→ P ′ then ∀Rk ∈ Nc.fl(Rk) ∩ (fl(P ) ∪ m̃) = ∅. ∃Q′.

Q ‖ Rk
τ=⇒ Q′ and νm̃.(P ′ ‖ Rk)l⊕k R Q′

Let ≈c be the largest weak c-bisimulation. One may show, applying proofs similar
to the proofs of Theorem 1 and 2, that ≈c is a c-congruence and that

Theorem 3. ∼=c = ≈c

As an example, we may then (writing 〈t〉 for 〈t〉.0) show νk.�〈n〉.〈n〉�k ≈c

νk.�〈n〉�k ‖ νl.�〈n〉�l because

{ (νm̃k.(�〈n〉.〈n〉�k ‖ Q)σ⊕k, νm̃kl.(�〈n〉�k ‖ (�〈n〉�l ‖ Q)σ1⊕l)σ2⊕k),

(νm̃k.(�〈n〉�k ‖ Q)σ⊕k, νm̃kl.(�〈n〉�k ‖ (�0�l ‖ Q)σ1⊕l)σ2⊕k),

(νm̃k.(�0�k ‖ Q)σ⊕k, νm̃kl.(�0�k ‖ (�0�l ‖ Q)σ1⊕l)σ2⊕k)

| σ ∪ σ1 ∪ σ2 ⊆ fl(Q) }

is a weak c-bisimulation up to structural c-congruence.

6 An Example: ARAN

As mentioned in the Introduction a key motivation for our work is to establish a
framework that allows to reason about security properties for MANETS. In [6]
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an attack on the cryptographic routing protocol ARAN [18] was identified and
below we recapture the principles of this attack.

The goal of ARAN is to ensure secure requests for routing in ad hoc networks
by making requests and replies be signed and checked in every hop, hence mes-
sages cannot be altered and therefore the protocol is claimed to be safe in that
no false routing information can be imposed by malicious nodes. The basic idea
of the protocol is that a receiver of a message is obliged to check its signature
and if the message is correctly signed the signature is removed and signed by
the node itself before the new message is forwarded. It is assumed that all valid
nodes in the network a priori have a private public key pair and a certificate and
also that the public key of the certificate authority is known to every node.

In order to illustrate the attack it is sufficient to consider only a network
consisting of three nodes: the initiator of a route request, the destination of the
request, and an attacker. The attacker is not a valid node and hence it has not
been authorized by the certificate authority.

The simplified ARAN protocol we consider goes as follows: The initiator
broadcasts a signed request rdp to its neighbors and awaits a signed reply rep
in return, if the reply is successfully returned the initiator broadcasts success.
Hence the destination must be an immediate neighbor in order for a route to
exist. The destination of the route request on the other hand waits for a signed
route request, checks that it is properly signed and if so returns a signed reply
to the initiator. Upon reception of the reply the initiator validates the signed
message.

To model the cryptographic primitives, let {ok , pk , sk , sign} be a set of con-
structor symbols and let {check , get} be a set of destructor symbols where ok
has arity 0, where get, pk, and sk have arity 1, where sign has arity 2, and
where check has arity 3. We let pk (n) be the constructor for a public key based
on some seed n, and we let sk(m) be a private (secret) key based on the seed m.
The application of the constructor sign

sign(pk (n), sk(m)) ,

then denotes the signing of the public key pk(n) with the secret key sk(m). We
let the destructors check and get be defined by:

check (t, sign(t, sk(s)), pk (s)) = ok , get(sign(t, sk(s))) = t .

That is, checking the signature of a message t with the public key matching the
private key by which the message was signed yields the result ok . The destructor
get simply returns the contents of a signed message. By convention we introduce
two auxiliary destructors, fst and snd , that returns the first and second element
of a pair respectively.

As shorthands for the process expressions, whenever q is 0, we abbreviate
if t = s then p else q by if t = s then p, we write let x = g(t1, . . . , tk) in p
instead of let x = g(t1, . . . , tk) in p else q, and also, as before we write 〈t〉 for
〈t〉.q.
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Table 7. ARAN processes

p0
def
= νn1.let xcert = sign(pk(n1), sk(n0)) in p1

p1
def
= let xsreq = sign(rdp, sk(n1)) in 〈(xsreq , xcert)〉.(x).p2

p2
def
= let x1 = fst(x) in let x2 = snd(x) in p3

p3
def
= if rep = get(x1) then let xkey = get(x2) in p4

p4
def
= if check(xkey , x2, pk(n0)) = ok then p5

p5
def
= if check(rep, x1, xkey) = ok then 〈success〉

q0
def
= νn3.let xcert = sign(pk(n3), sk(n0)) in (x).q1

q1
def
= let x1 = fst(x) in let x2 = snd(x) in q2

q2
def
= if rdp = get(x1) then let xkey = get(x2) in q3

q3
def
= if check(xkey , x2, pk(n0)) = ok then 〈(sign(rep, sk(n3)), xcert)〉

The simplified one shot version of the ARAN protocol is defined by:

A = νn0.(�p0�l ‖ �q0�k) ,

where p0 and q0 are defined in Table 7. The process p0 defines the behaviour of
the initiator of the protocol, and q0 defines the behaviour of the destination.

The intruder, which in this example can only relay messages, is defined as a
hidden node by:

I = νm.�rec z.(x)〈x〉.z�m . (8)

Observe, that since the intruder is a hidden node broadcasting of messages from
I cannot be observed.

A correctness criterion for the ARAN protocol is as stated above that the
routing messages must be validated in each and every hop, in that each hop
should always be between certified nodes only. For instance, it must not be
possible for a non-certified node (an intruder) to be part of a valid route in
ARAN. This criterion may be checked by verifying as to whether the proto-
col is unaffected by running together with an intruder doing relays as defined
by (8).

The composition of A and the intruder can do the following computation:

A ‖ I
l=⇒ νn0.νn1.νm.(�(x).p2�m

l ‖ �q0�k ‖ �〈t〉.rec z.(x)〈x〉.z�l
m) = P , (9)

where
t = (sign(rdp, sk(n1)), sign(pk (n1), sk(n0))) .

We argue A �≈ A ‖ I, and hence demonstrate that the simple version of the
ARAN protocol is not robust and therefore subject of attack from an intruder
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doing relays. A can match the weak output transition (9) above by the four
moves:

A
l=⇒ νn0.νn1.(�(x).p2�l ‖ �q0�k) = Q ,

A
l=⇒ Ql⊕k ,

A
l=⇒ νn0.νn1.(�(x).p2�l ‖ �νn3.〈t′〉�k) = Q′ ,

A
l=⇒ Q′

l⊕k ,

where t′ = (sign(rdp, sk(n3)), sign(pk (n3), sk(n0))).

Clearly P �≈ Q because P
k=⇒ which cannot be matched by Q. Notice that

the in-equivalence follows due to computations by P where the intruder is part
of a route from the initiator to the destination whereas Q is a state where the
request has been lost. Because P �≈ Q also P �≈ Ql⊕k due to Lemma 2 since
Q = Ql�k.

The final part of the proof is due to the fact that the state P where the
intruder got the request can be followed by a computation in which the message
is lost when the intruder performs a (hidden) broadcast, 4 i.e.

P
τ−→ νn0.νn1.(νm.(�(x).p2�m

l ‖ �q0�k ‖ �rec z.(x)〈x〉.z�l
m)) = P ′ .

Then, since in Q′ the destination cannot escape being able to broadcast, because

for all R ∈ {R | Q′ τ=⇒ R} = {Q′, Q′
l⊕k} it holds that R

k−→, and since P ′ � k=⇒
it turns out that P �≈ Q′. It then follows from Lemma 2 that also P �≈ Q′

l⊕k

because Q′ = Q′
l�k.

7 Conclusion

We have defined a broadcasting calculus, CMAN, for MANETS that supports
synchronous spatially oriented broadcast and dynamic changes of the network
topology. CMAN is equipped with a natural reduction semantics and congru-
ence, and a co-inductive sound and complete bisimulation characterization. The
characterization is shown to be particularly simple for connection closed net-
works. CMAN has been applied on a small example of a cryptographic routing
protocol. A major advantage of CMAN is that it permits direct description of
features of MANETS that would be hard do describe in classical calculi.

In the future the process language of CMAN should be extended with concur-
rency, and we consider also extending the network language with a replication
like construct that allows to reason about infinitely many (copies of) instances
of nodes. Also, it would be of interest to understand how the semantics should
be altered to cater for unidirectional communication links.

4 Alternatively the intruder could disconnect from the initiator and then make the
broadcast to an empty set of receivers.
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As of now nodes are allowed to move around arbitrarily connecting to any
other node, however that freedom may seem to be too liberal for many applica-
tions, and hence the mobility capabilities may be restricted in our future work
by imposing more structure on the networks.

Finally, a challenging topic would be to continue the work of how to formalize
and reason about security properties for MANETS, and in particular to investi-
gate to what extent the current behavioural equivalences are sufficient to cater
for more extensive security analysis.

Acknowledgments. Thanks to the anonymous reviewers for valuable com-
ments on earlier versions of this paper.
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A Theory of Nested Speculative Execution

Cristian Ţăpuş and Jason Hickey

California Institute of Technology

Abstract. Implementing distributed applications is a challenging task. Devel-
opers are confronted with issues like fault-tolerance, efficient synchronization
mechanisms, and the correctness of the distributed code. Transactions are a sim-
ple and powerful mechanism for establishing fault-tolerance. To allow multiple
processes to cooperate in a transaction we relax the isolation property. We call the
new abstraction a speculation. This paper introduces a new programming model
based on speculative execution. Speculations provide distributed coordinated roll-
back and enable optimistic execution of synchronization points. We present an
operational semantics for nested speculative execution that specifies distributed
speculations precisely. We also discuss two approaches to implementing support
for speculations.

1 Introduction

Writing distributed applications can be a challenging task. Some of the main prob-
lems that one is confronted with when writing distributed code are fault-tolerance, the
efficiency of the distributed synchronization mechanisms, and the correctness of the
programs.

Transactions are one of the earliest and simplest abstractions for reliable concur-
rent programming [1]. They provide fault-isolation by guaranteeing the atomicity, the
consistency and the durability of the actions performed as part of the transaction. Tradi-
tional transactions also provide isol ation, which prevents the independent actions inside
of a transaction to be visible to the rest of the world until the transaction either aborts
or commits.

In this paper we consider the case where multiple processes may cooperate in a
transaction. This requires relaxing the transactional isolation property. We call these
transactions with relaxed isolation speculations. We introduce them as programming
language primitives.

A speculation defines a computation that is based on an assumption whose verifi-
cation occurs in parallel with the computation. For example, upon entering a critical
section of a program that is guarded by a shared mutex one process can speculatively
assume that no other process executes inside the critical section. It starts executing the
critical section code, while it verifies in parallel that the assumption was indeed correct.
If the assumption is invalidated the speculation is aborted and the process rolls back
its state to what it was before starting the speculation. However, if the assumption was
correct the speculation is committed and the process continues its execution.

We introduce the speculative programming model through three calls that correspond
to starting a speculation, aborting and committing it. These calls have the following
types associated with them.

A.L. Murphy and J. Vitek (Eds.): COORDINATION 2007, LNCS 4467, pp. 151–170, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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speculate : void → int
abort : int → ⊥
commit : int → void

The speculate function returns an integer, where the integer represents the local iden-
tifier of the speculation when the speculate function is initially called, and -1 if the
speculation is later rolled-back. The local identifier of the speculation is used by the
abort and the commit calls to identify the speculation (computation) that needs to be
rolled back or committed. We call the commit branch the execution that follows after
an initial speculate call until either an abort or a commit call are encountered. If the
speculation is aborted the process is rolled back to the state it had when the speculate
call was executed, and the value -1 is returned. In this case, the program may take an
alternate execution path, as if it never executed on the commit branch. We call the code
executed in this case the abort branch. Conceptually, the abort and the commit calls do
not return a value. Their main purpose is to guide the flow of the speculative program.
Thus, speculations have dynamic scoping, based on when the abort or commit functions
are called.

Also, the speculative execution model presented in this paper has a component that
enables distributed rollback actions to occur. A process may disseminate speculative
data to other processes through shared objects, making their computation speculative as
well. If the initiator of the speculation rolls back it forces the other processes that used
its speculative data to roll back as well.

Speculations provide programs written in imperative languages (like C) with an ex-
ception mechanism similar to that found in pure functional languages (like Haskell).
This semantics is also extended to distributed applications.

The contributions of this paper include:

– the introduction of a new programming model based on speculations,
– the definition of new speculative programming language constructs for distributed

applications,
– an overview of the formal specification of the semantics of speculative execution,
– a brief discussion of two implementations, and
– a discussion of possible uses of the speculative execution model in designing tools

for verifying and enforcing the correctness of distributed applications.

The rest of the paper is organized as follows. We introduce speculations through
examples in Section 2. Next, we provide a formal model for nested speculations in
Section 3. We present related work and compare speculations with similar research
initiatives in Section 5. We conclude by discussing future directions of this research.

2 Examples

2.1 Improving Performance with Speculations

Consider a total order protocol implemented over a reliable network that might reorder
packets. Each message sent in the network is tagged with an identifier containing a se-
quence number. For the purpose of this example we consider sequence numbers to be
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1: read message M from network; t0 ← time
2: while time < t0 + T ∧ ∃ m′ . last(m′) < M do
3: process messages from network
4: end while
5: if ∃ m′ . last(m′) < M then
6: specid(M) = speculate(); deliver M
7: if receive message M ′ s.t. M ′ < M then
8: abort(specid(M))
9: if ∀ m′ . last(m′) > M then
10: commit(specid(M))
11: else
12: deliver M
13: end if

time is current system time
last(m′) is last message seen from machine m′

T is the waiting window before speculating

Fig. 1. Algorithm for total-order communication using speculations

real numbers, where gaps in the sequence of messages are inherent. When a message M
is received, the message is held in a receive queue until all messages M ′ with smaller
IDs have been delivered to the application, and only then is the message processed. We
will further use the terms received and delivered as follows. A message is received when
the message is passed from the network driver to our protocol. A message is delivered
to the destination when the protocol makes it available to the application layer that
uses our protocol. The decision of whether to deliver message M or not cannot always
be taken at the time when M is received. We assume that there is a bound on the time
between when the message is sent until it is received. This, together with the assumption
that communication is reliable, provides an upper bound on how long a message would
be stored in the receive queue.

To optimize performance, our algorithm uses speculations and a sliding window
mechanism, similar to the TCP window. Figure 1 gives the pseudo-code for this al-
gorithm. The recipient of a message uses speculations in the following way: if the first
message, M , in the receive queue has not been delivered within time T , the recipient
enters a new speculation that assumes M may be delivered at this time. Once the recip-
ient enters the speculation, it delivers the message. The speculation can be committed
once the recipient has seen messages from every other machine with IDs larger than
that of M . If the recipient, however, receives a message, M ′, with ID smaller than M ,
then the recipient must abort the speculation and return to the state where M was at the
head of the queue and waiting to be delivered. The new message, M ′ will be put at the
head of the queue and the procedure is repeated.

Two possible outcomes of executing this protocol are illustrated in Figure 2. On
the left hand side of the image the outcome of a successful speculative message de-
livery is shown. In this case the protocol waits for a given time T after the receipt of
the message before it starts speculating. It speculates that M is deliverable and begins
computing based on the value provided by M. This way useful computation is accrued.
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Fig. 2. Two possible speculative executions of the speculative total order protocol

The confirmation that M is deliverable is received later on. In the speculative version
the confirmation triggers the commit of the speculation and the earlier started com-
putation continues. In the nonspeculative model, shown on the same graph, the useful
computation based on message M is only started upon receiving the confirmation of
M’s deliverability.

The right hand side of the figure shows the case when the speculation that is based
on the deliverability of the last received message is invalidated several times. However,
as shown, at some point the message that should be delivered to the application arrives.
In this case we fall back to the case shown on the left hand side of the figure, where
speculating on the deliverability of that message is successful.

A brief discussion of the benefits of using speculations for the total order protocol
example. In this paper we are only going to present an overview of a more complex
probabilistic model that captures the benefits of speculative execution. Consider the set
of parameters described below that characterize our model.

U the time from the reception of the message until the moment it can be
safely delivered for the single speculation case

V the time from the reception of the message until the moment it can be
safely delivered for the multiple speculation case

W the time from the reception of the message M until the reception of the
last message that should be delivered before M .

T the waiting window size
Te the time spent entering a speculation
Ta the time spent aborting a speculation
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Tc the time spent committing a speculation
p the probability that a message could be delivered upon reception
q the probability that U > T
r the probability that V > T

The condition for which the latency of our system is less than that of the classical
model is given by the following inequality:

pqE[U ]∞T +(1−p)r(E[V ]∞T −E[W ]∞T ) ≥ pq(T +Te +Tc)+(1−p)r(Ta +Te +Tc)

Each term on each side of the inequality corresponds to one of the two cases pre-
sented in Figure 2, as follows. For the first case, the first element on each side of the
inequality presents us with the following intuition: if the safe delivery time for the mes-
sage is greater than the waiting window size plus the cost of entering a speculation and
the cost of commiting it then we gain useful computation if we speculate. For the sec-
ond case, we consider the second element on each side of the inequality. The intuition
is that if the time from when we delivered the last message with an ID less than mes-
sage M until the safe delivery time for M is greater than the time to abort a speculation
(which is the one we invalidated due to that last message with a lower ID than M ) plus
the time to enter a new speculation and commit it then we gain useful computation.

A detailed mathematical analysis of of this example is presented in [2].

Other applications of speculations to improve performance. The problems that can
be optimized using speculations do not reduce to the class of total-order protocols. If
a computation is based on a condition that is usually expensive to compute, but that
most of the time returns an easy to estimate result, we can use idle computing units
to concurrently execute the verification and the computation. The computation would
be executed speculatively, assuming a certain return by the verification procedure. This
mechanism can increase the overall performance of the system. Smart devices, like
intelligent network cards and graphic cards, are becoming a commodity with high com-
putation abilities that is idle most of the time. We envision that verification tasks could
be shipped to such devices, while the computation speculatively executes on the main
CPU.

2.2 A Distributed Speculative Web Reservation System

Another interesting example considers the interaction between different active entities
(processes) in the system while they perform speculative operations. We use a reserva-
tion system to illustrate this. A client needs to reserve a plane ticket and a hotel room.
She contacts a flight agent for the airfare, and a hotel for lodging. The programs, in
pseudo-code, using speculative constructs for the client and the two agents are shown
in Figure 3.

Figure 4 shows the speculative dependencies for a successful reservation. The client
speculates that the prices will be acceptable and that she will succeed with the reser-
vation (speculation s1) and requests quotes from both the flight agent and the hotel.
Upon receipt of the requests both the flight agent and the hotel become part of the
client’s speculation. The hotel successfully processes the request and sends a quote to
the client. The flight agent computes a quote based on her local information, which
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Client Flight Agent Hotel
if (sc=speculate() > 0) receive-request receive-request

request-hotel check-reservations check-availability
request-flight if (sf =speculate() > 0) if room then
get-quotes send price-quote send price-quote
if !available then check with airline get payment

abort(sc) if unavailable then else
else if !expensive abort(sf ) send NO-ROOM

pay for services else
commit(sc) send-confirmation

else abort(sc) get payment
else commit(sf )

try different agents else
do nothing

Fig. 3. Speculative programs for reservation system

might be inaccurate, since the airline is the ultimate authority for availability. It spec-
ulates that the reservation will be confirmed by the airline (speculation s2), and sends
the quote to the client, pending a final confirmation from the airline. When the client re-
ceives the speculative quote from the flight agent her actions become speculative based
on the information provided by the agent. Therefore, her computation depends now on
both s1 and s2. Furthermore, when she sends payment to the hotel it absorbs the hotel
in the speculation as well. When the airline confirms the reservation the information is
forwarded to the client and speculation s2 is committed on the flight agent’s end. The
commit eventually gets propagated to the client and to the hotel. In the meanwhile, the
client decides that the operation was successful and commits its speculation as well,
which eventually propagates to both agents. The hotel may receive the commit mes-
sages in any order, without it having an effect on its correct behavior.

Figure 5 illustrates the behavior of the system in case of an aborted speculation. The
first set of events is identical to the previous case. The flight agent runs the commit
call because the reservation is successful on the airline’s end. After receiving the quotes
from the flight agent and the hotel, the client decides the prices are too high and aborts
her speculation. This triggers the rollback of all the entities: the client, the hotel and the
flight agent. The client continues executing the abort branch which involves contacting
another pair of agents (as described in Figure 3).

This example shows the ability of speculations to increase the parallelism and to re-
store the state of a distributed system to a consistent state upon an optimistic assumption
being invalidated. The same type of problem has seen great exposure and has prompted
the development of new transactional models in the database community [3].

3 Operational Semantics

Nested speculations, where processes are allowed to start speculations while they are
executing inside speculations, are a refinement of the single speculation model [4]. They
allow for finer grained speculative execution and provide, in certain cases, rollback to a
more recent state than the single speculation model.
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Fig. 4. The reservation succeeds Fig. 5. The reservation fails

Note: In the figures above the send operations are shown as squares, while receives are
represented by circles.

We present a speculative distributed objects system model consisting of processes
and shared objects. Shared objects store values that can be accessed by any process in
the system. They will be the vehicles to propagate speculations in the system.

Processes execute programs and can start speculations by executing the speculate
call. After a speculation is started, we say that the speculation is active until a commit
or an abort call is executed. We say that a process is executing inside a speculation
if the process’s program is executed as part of a speculative computation. An object
becomes part of a speculation, or is involved in a speculation if a process that is inside
a speculation accesses the object. A process is absorbed in a speculation if it reads data
from an object that belongs to that speculation.

We say a process or an object belongs to a speculation if it started that speculation or
if it was absorbed in the speculation.

This section presents the semantics of our speculative primitives in the context of a
distributed environment. The semantics is presented as a set of operational rules that
capture the transition of the distributed system state when speculative actions occur in
the system. We present a subset of the operational semantics rules that define our model.

We believe that presenting the detailed operational semantics of distributed specu-
lative execution is critical in providing other researchers with a clear specification of
this useful concept (speculations) in order to facilitate the development of alternate ap-
proaches, and aid in their comparison.

3.1 Syntax of the Primitives

The terms of the language that we consider are defined in Figure 6. The base language
(L) can be any language that does not posses operations for reading from and writing
to shared objects.
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Construct Description
e::=L The base language

speculate(e1 ⊕ e2) Speculate call
commit(s) Commit call
abort(s) Abort call
let v = read(oj) in e[v] Read the value of object oj

write(oj , x) Write value x to object oj

e ; e Sequencing

Fig. 6. Syntactically valid terms

The speculative construct speculate(e1⊕e2) defines a speculation. In the speculative
mode, the program executes e1. If it executes an abort(s), the speculation s is aborted
and the process rolls back and executes e2. If a commit(s) is encountered in e1, the
process will never roll back its state to take the e2 branch. We refer to e1 as the “commit”
branch, and to e2 as the “abort” branch.

The let v = read(oj) in e[v] construct assigns the value of shared object oj to
variable v, which is bound in e. The write operation is represented by write(oj , x). It
stores the value x in shared object oj .

Syntactically valid terms can be sequenced using the “;” separator.

3.2 Terminology and Notation

The speculative operational semantics presented in this section uses the notation shown
in Table 1. The operational semantics defines a reduction system that operates on states.
If a distributed system in state Δi reduces in one step to state Δ′

i we write Δi ⇒ Δ′
i.

The meaning of Δi ⇒ Δ′
i is that the state of one, and only one, process changes as part

of the reduction step. Formally, this is written as follows.
In this model the state of the distributed system (Δ) is composed of two entities:

the states of the objects in the system Θ, and the states of the processes running in the
system Π .

The state of a shared object (Oj) is characterized by the value it stores (V ) and
by an optional checkpoint list (K). A checkpoint of the object is taken each time the
object enters a new speculation. The checkpoint list is ordered, with the most recent
checkpoint being listed first. Each checkpoint in the optional checkpoint list stores a
dependency list (DS) and the value (V ′) the object had before entering the specula-
tion. The dependency list (DS) stores the identifiers of the speculations the checkpoint
depends on. The use of the dependency list will become clear when we present the op-
erational semantics rules. The checkpoint list is empty if the object is not part of any
speculation.

The state of a speculative process (pi) is defined by three components:

– The list of speculations that the process started (LS).
– An optional checkpoint list, where the most recent checkpoint is listed first (c).
– An environment (Γ ), and the instructions of the program it executes (e). The envi-

ronment, (Γ ), contains definitions of the local variables of the process.
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Table 1. Notation for speculative processes

Δ ::= Θ ‡ Π State of a speculative distributed system
Θ ::= o1 : O1 ; . . . ; om : Om Speculative state of objects o1, . . . , om

Π ::= p1 : P1 . . . pn : Pn Speculative state of processes p1, . . . , pn

Oj ::=
[

K V

]
Speculative state of an object

K ::= κq ; . . . ; κ1 Ordered list of checkpoints; most recent first
κ ::= 〈DS , V ′〉 Checkpoint of a speculative object

DS ::= s ; . . . ; s′ List of speculation ids

Pi ::= :
[

LS C Γ 	 e

]
Speculative state of process pi

C ::= cr ; . . . ; c1 Ordered list of checkpoints; most recent first
c ::= 〈DS , Γ ′ , e′〉 Checkpoint of a speculative process

LS ::= s ; . . . ; s′ List of speculation ids

The checkpoint of a process has itself three components:

– The dependency list (DS) represents the list of speculations on which the check-
point depends. The order of speculation identifiers in the list is relevant; the list is
ordered with the most recent checkpoint first.

– The local environment of the process (Γ ′), at the time the process became part of
the speculation.

– The expression to be executed in case of rollback (e′), the “abort” branch of the
speculation.

The dependency list saved in a checkpoint (DS) is defined as an ordered list of
speculation identifiers, represented as follows: {s0, s1, ...sq, ...sk}. The order of the
speculation identifiers in the dependency list gives the order in which speculations were
entered by the current process or by other processes or objects whose speculative data
was read at some point by the current process. We define the concatenation, or merger,

operator (
↔
∪) on dependency lists, as follows:

If DS = {si0 , si1 , ...sip} and DS′ = {sj0 , sj1 , ...sjq }, then

DS
↔
∪ DS′ = {si0 , si1 , ...sip , sj0 , sj1 , ...sjq}.

Next we present the most significant rules of the operational semantics.

3.3 Speculate

A process outside any speculation successfully starts a new speculation by using the
speculate(⊕) construct. A new speculation is created and added to the list of specula-
tions created by the process. A checkpoint of the process is also taken. The checkpoint
becomes part of that process’s state and is added to the top of the checkpoints stack.
The process advances with the execution to the next instruction in its program.
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We only show the case when a speculative process starts a new speculation. The
case when a nonspeculative process initiates its first speculation is similar and trivial.
The speculation identifier is added to the list of speculations started by the process.
A new checkpoint is saved in the checkpoint stack. The speculation dependency list
associated with the checkpoint is computed by adding the speculation identifier to the
front of the dependency list of the previous checkpoint. By adding the speculation s
to the front of the dependency list DS , we force the speculation to depend on all the
previous speculations the process is involved in. The rule describing these actions is
shown next.

Spec

Θ ‡ pi :

�
LS 〈DS , Γ ′ , e′〉 ; C Γ 	 speculate(e1 ⊕ e2); e3

�
; Π

=⇒

Θ ‡ pi :

�
s; LS 〈{s}

↔
∪ DS , Γ , e2; e3〉 ; 〈DS , Γ ′ , e′〉 ; C Γ 	 e1; e3

�
; Π

3.4 Reading from a Shared Object

The process is outside any speculation and the object is inside a speculation. See
rule READ-SPEC-OBJ. A nonspeculative process executing a read from a speculative
object becomes itself speculative. The process’s state depends on speculative informa-
tion, so the process is absorbed in the object’s speculation. A checkpoint of the process
is created to allow rollback if the speculation is later aborted.

Read-Spec-Obj

oj :

�
〈DS , V ′〉 ; K V

�
; Θ ‡ pi :

�
LS 〈 〉 Γ 	 let v = read(oj) in e[v]

�
; Π

=⇒

oj :

�
〈DS , V ′〉 ; K V

�
; Θ ‡

pi :

�
LS 〈DS , Γ , let v = read(oj) in e[v]〉 Γ, v : V 	 e[v]

�
; Π

The process and the object are inside different speculations. See rule READ-SPEC-
NESTED. The most interesting case for reading the value of a shared object is when
the process and the object belong to different speculations. After the read operation is
performed the state of the process depends on the speculative data stored in the shared
object at the time of the access. The process saves a checkpoint that depends both on
the speculation list its current state depends on and the speculation list the object’s state

depends on. We use the DS
↔
∪ DS′ notation to merge the two dependency lists. The

following rule provides the graphical representation of the state change.
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Read-Spec-Nested

oj :

�
〈DS , V ′〉 ; K V

�
; Θ ‡

pi :

�
LS 〈DS

′ , Γ ′ , e′〉 ; C Γ 	 let v = read(oj) in e[v]

�
; Π

=⇒

oj :

�
〈DS , V ′〉 ; K V

�
; Θ ‡

pi :

�
LS 〈DS

↔
∪ DS

′ , Γ , let v = read(oj) in e[v]〉 ; 〈DS
′ , Γ ′ , e′〉 ; C

Γ, v : V 	 e[v] ] ; Π

3.5 Writing Data to a Shared Object

The process is inside a speculation and the object is outside any speculation. See
rule WRITE-SPEC-PROC. When a process that speculates writes a value to a shared ob-
ject that is not part of any speculation the object is absorbed in the process’s speculation.
The system creates a checkpoint for the object, storing the value it had before becoming
part of the speculation, which allows it to roll back if the speculation is aborted. The
speculation id is also stored as part of the checkpoint.

Write-Spec-Proc

oj :

�
〈 〉 V

�
; Θ ‡ pi :

�
LS 〈DS , Γ ′ , e′〉 ; C Γ 	 write(V ′, oj); e

�
; Π

=⇒

oj :

�
〈DS , V 〉 V ′

�
; Θ ‡ pi :

�
LS 〈DS , Γ ′ , e′〉 ; C Γ 	 e

�
; Π

The process is outside any speculation and the object is inside a speculation. See
rule WRITE-SPEC-OBJ. A nonspeculative process that writes to a speculative object
extracts the object from the speculation it belongs to. This behavior is expected, because
regardless of the outcome of the speculation the object belongs to, the nonspeculative
write would have been performed.

Write-Spec-Obj

oj :

�
〈DS , V ′〉 ; K V

�
; Θ ‡ pi :

�
LS 〈 〉 Γ 	 write(V ′′, oj); e

�
; Π

=⇒

oj :

�
〈 〉 V ′′

�
; Θ ‡ pi :

�
LS 〈 〉 Γ 	 e

�
; Π

The process and the object are inside different speculations; speculations are
merged. See rule WRITE-SPEC-NESTED. The most interesting case for writing an
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object is when the process and the object are inside different speculations. In this case
the object becomes speculative and a new checkpoint is created. Its checkpoint depends
on both the speculations in the object’s dependency list as well as the process’s de-

pendency list. Again, we use the DS
↔
∪ DS′ notation to merge the two dependency

lists.

Write-Spec-Nested

oj :

�
〈DS

′, V ′〉 ; K V

�
; Θ ‡

pi :

�
LS 〈DS , Γ ′ , e′〉 ; C Γ 	 write(V ′′, oj); e

�
; Π

=⇒

oj :

� �
DS

↔
∪ DS

′, V ′′
�

; 〈DS
′, V ′〉 ; K V ′′

�
; Θ ‡

pi :

�
LS 〈DS , Γ ′ , e′〉 ; C Γ 	 e

�
; Π

3.6 Aborting a Speculation

Processes and Aborted Speculations. A process that is inside a speculation that it
owns is allowed to abort it. The reduction rule for the abort() call substitutes the
id of the aborted speculation with the aborted special constant and rolls back the
process to the state it was before entering the speculation. Also, the speculation id
is erased from the speculations environment. The substitution operation guarantees
that once a speculation has been aborted no other process or object can be absorbed
in that speculation, since its id has been replaced by the special constant aborted.
The substitution of all occurences of speculation identifier s with the special constant
aborted is represented in the operational semantics as follows: Θ[s] ‡ Π [s] =⇒
Θ[aborted] ‡ Π [aborted]

The abort operation has in fact two steps in our operational semantics, as described
below. This separation is not necessary in the implementation, its sole purpose being to
clearly identify the actions that have to be performed for the system to behave correctly.

First, the process that aborts the speculation has to abort all the speculations that
it started since it entered that speculation. By repeatedly applying rule AB-OWNER it
aborts them and rolls back its state. The program does not change for the process during
this stage.

Ab-Owner

Θ[sj1 ] ‡ pi :

�
sj1 ; LS ; sjq ; LS

′ C′ ; 〈sj1 ; DS , Γ ′ , e′〉 ; C Γ 	 abort(sjq ); e

�
;

Π [sj1 ]
=⇒

Θ[aborted] ‡ pi :

�
LS ; sjq ; LS

′ C Γ ′ 	 abort(sjq ); e′
�

; Π [aborted]
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The second step is reached when the speculation that it wants to abort is the last one
in its list LS (See rule AB-OWNER-LAST. At this point it aborts the speculation and it
continues execution on the abort branch, e′.

Ab-Owner-Last

Θ[sjq ] ‡ pi :

�
sjq ; LS C′ ; 〈sjq ; DS , Γ ′ , e′〉 ; C Γ 	 abort(sjq ); e

�
; Π [sjq ]

=⇒

Θ[aborted] ‡ pi :

�
LS C Γ ′ 	 e′

�
; Π [aborted]

If the execution of a process depends on a speculation that has been aborted by
another process, it has to roll back and restart the computation from the point where it
was absorbed in the speculation. If it has itself started speculations during the aborted
computation, it has to abort them as well. Again, we designed a two-step process to
handle this. First, the process aborts all the speculations that it has started and rolls
back, step by step, to the last speculation it started inside the remotely aborted one. For
this the rule AB-FORCE-AB is applied repeatedly.

Ab-Force-Ab

Θ[s] ‡ pi :

�
s;LS C′ ; 〈s ; DS ;aborted ; DS

′ , Γ ′ , e′〉 ; C Γ 	 e

�
; Π

=⇒

Θ[aborted] ‡ pi :

�
LS C Γ ′ 	 e′

�
; Π [aborted]

When the process is inside the remotely aborted speculation and has no active spec-
ulations that it started itself, then it rolls back to the state it had before becoming part
of that speculation as described by rule AB-PROC.

Ab-Proc

Θ ‡ pi :

�
LS C′ ; 〈DS ; aborted ; DS

′ , Γ ′ , e′〉 ; C Γ 	 e

�
; Π

=⇒

Θ ‡ pi :

�
LS C Γ ′ 	 e′

�
; Π

whenLS ∩ DS = ∅

Objects and Aborted Speculations. If an object is inside an aborted speculation it rolls
back its state to the state saved in the checkpoint associated with the speculation in a
manner similar to that presented for processes in rule AB-PROC.

3.7 Commit a Speculation

Processes and Committed Speculations. Only processes that own a speculation may
commit it. The checkpoint associated with the speculation is discarded and the
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speculation is marked as committed. This prevents other processes to become depen-
dent on the speculation. The reduction rule COMM-OWNER illustrates this behavior.

Comm-Owner

Θ[s] ‡ pi :

�
LS ; s; LS

′ C′ ; 〈s ; DS , Γ ′ , e′〉 ; C Γ 	 commit(s); e
�

Π

=⇒

Θ[committed] ‡ pi :

�
LS

′ ; LS C′[committed] ; C Γ 	 e

�
Π [committed]

If a speculation has been aborted its identifier can be eliminated from the dependency
list associated with the checkpoints that depended on it. The operational semantics rule
corresponding to this behavior is COMM-PEER.

Comm-Peer

Θ ‡ pi :

�
LS C′ ; 〈DS ; committed ; DS

′ , Γ ′ , e′〉 ; C Γ 	 e

�
Π

=⇒

Θ ‡ pi :

�
LS C′ ; 〈DS ; DS

′ , Γ ′ , e′〉 ; C Γ 	 e

�
Π

Finally, if a checkpoint does not depend on any speculations it can be completely
eliminated. The COMM-REMOVE rule shows this action.

Comm-Remove

Θ ‡ pi :

�
LS C′ ; 〈 , Γ ′ , e′〉 ; C Γ 	 e

�
Π

=⇒

Θ ‡ pi :

�
LS C′ ; C Γ 	 e

�
Π

Objects and Committed Speculations. When speculations are committed by
processes, the objects inside the speculation may have to discard their saved checkpoint
in a way similar to how processes do it.

3.8 Equivalence to Nonspeculative Excution

Using the operational semantics presented in this paper we have been able to provide a
proof of equivalence between this model and a nonspeculative, nondeterministic model.
This result enables the use of existing tools, like model checkers and theorem provers to
reason about speculative programs, rather than building new such tools that understand
the speculative constructs that we introduce. Due to space constraints we are unable to
provide a detailed description of the nonspeculative model or of the equivalence proofs.
However, a detailed presentation can be found in [4].
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4 Implementations of Speculations and Their Limitations

To validate the operational semantics presented in this paper we implemented two sys-
tems that provide primitives for speculative execution. We have found speculations to
be a powerful and useful programming model; however, in the two implementations
that we provide there are several limitations that potential users should consider. The
limitations we discuss are inherent to our implementations of speculations and could be
addressed in other systems based on our operational semantics.

We initially investigated speculative execution in conjunction with process migra-
tion as programming language primitives implemented through a compiler. The Mojave
Compiler Collection (MCC) [5] is a heap-based multi-language compiler that enables
speculative execution. This aproach requires runtime library or operating system sup-
port for speculative I/O. Furthermore, the programmer has to be aware that, in the exist-
ing environments, certain actions, like printing or screen output, are hard or impossible
to undo. This is especially true if users observe these actions; thus they should be wisely
used inside speculations. We have chosen not to simply prohibit the use of such actions
inside speculations because in certain cases, like building speculative debuggers, the
speculative output can be used to identify problems with the code.

To fully support distributed speculative execution, including speculative network
communication, we implemented speculations at the operating system level [4]. By
providing the entire functionality inside the Linux kernel, we eliminated the need for
a special compiler. We export the speculative primitives as system calls. Furthermore,
user level processes that are not aware of speculations can be transparently instrumented
by the operating system to enable speculative behavior. This approach significantly
broadens the use of speculations. Caution is still required when interacting with non-
speculative remote processes. However, we have found out that this is not an issue in
the case of closed environments, like clusters or highly parallel machines dedicated to
scientific computing, or if the actions performed are idempotent.

4.1 Cost of Speculative Primitives

Due to lack of space we only present a brief collection of experimental results obtained
using our kernel module implementation for speculative execution. The testbed was a
dual-processor machine with 700Mhz CPUs. The results are only presented to show the
relation between the cost of the speculative primitives and the cost of other operations
intrinsic to the operating system.

We measured the cost of each of the speculative primitives: entering the speculation,
performing the commit and the abort operations. The numbers were averaged over 100
runs and were measured for a program were data is created and accessed before the
speculation is started, data is modified in its entirety inside the speculation, and the
speculation is either committed or aborted. The results are shown in Figure 7.

For comparison we present in Figure 7 sample times for several system calls as well
as the context switch time for various numbers of processes of the same size running in
parallel. The results were collected using the LMbench [6] tool.

In conclusion, the cost of starting, aborting, and committing a speculation are sig-
nificantly less than the context switch times for large size processes and only one or
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Op. \ Size 100kb 32Mb 64Mb 128Mb
Speculate 708 751 857 1727
Commit 412 704 1334 1733
Abort 950 1786 1807 1866

Sys. call getpid() stat() open()/close()
Time 0.2063 23.0667 28.6804

Context switch
# proc \ Size 10kb 32Mb 64Mb 128Mb

2 2.05 17949 35958 72029
5 2.55 17989 35972 ///////

10 3.30 17989 /////// ///////

Fig. 7. The cost of speculative operations (in μs) vs. the cost of other system calls and that of the
context switch time (also presented in μs). The grayed out entries were eliminated because they
were significantly affected by swapping.

two orders of magnitude higher than regular system calls. Analysis of the performance
benefits of using speculative execution should be done on a per case basis since the
improvements depend on the frequency of the speculations and on their outcome.

5 Related Work

5.1 Transactions

Database transactions, known for their ACID (Atomic, Consistent, Isolated, Durable)
properties, are a powerful concept in providing reliability and fault-tolerance.

While database transactions have been studied extensively, an operational seman-
tics describing the behavior of speculations that could be applied to other domains has
only been recently provided [7]. In their approach, Prinz and Thalheim discuss ACID
transactions and do not take into consideration any relaxation of the properties.

Black et.al. [8] provide a very interesting equational theory of various types of trans-
actions. They discuss lightweight transactions that deviate from traditional transaction
by relaxing either the Consistency or the Durability property [8]. The theory they pro-
vide is presented using an equational calculus that has limited expressiveness, as it only
analyzes actions and does not capture state. Furthermore, in their approach isolation is
implicit.

Non-isolated transactions have been studied in the context of long-lived transactions
that can hold on to database resources for long periods of time, delaying the termination
of other transactions. Molina and Salem [3] introduced the concept of saga, which
is a non-isolated, non-atomic transaction formed of a set of smaller isolated, atomic
transactions and a set of compensating transactions that undo the actions of the smaller
transactions if those have to be rolled back.

Our concept of speculations and traditional database transactions share many traits,
but they are distinct in one significant way: speculations do not provide isolation. Thus,
processes executing inside speculations expose their actions to the outside world and
can absorb other processes in their speculation.
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Furthermore, we push the concept of non-isolated transactions from databases to
programming languages and distributed environments. This requires redefining the se-
mantics to the new domain it is used in, which we do in this paper.

The Venari project[9] implements a transaction mechanism as part of Standard ML,
utilizing a mutation log produced by a generational garbage collector to implement
undoability.

Harris and Keir provide conditional critical regions implementation in Java and in-
tegrate it with transactional memory and atomic execution blocks [10]. Their approach
has been very successful in moving away from locks and condition variables in writing
concurrent application.

Recent related work includes the AtomCaml [11] project, which is an extension to
Objective Caml that provides a synchronization primitive for atomic (transactional) ex-
ecution of code to replace locks. In our approach we allow speculative programs to use
communication to interact with other programs while executing inside a speculations.

These approaches consider only traditional transactions that require isolation. We
relax isolation, thus increasing the parallelism of the programs.

5.2 Checkpoint and Recovery

Both theoretical and practical works have discussed various approaches and protocols
that enable distributed applications to recover in a consistent state based on saved check-
points. This is achieved by either optimistic or pessimistic message logging, and by
coordinated or uncoordinated checkpoints. They usually assume the existence of stable
storage that survives failures.

Strom and Yemini introduced in [12] the notion of optimistic recovery. They de-
fine it as a technique based on dependency tracking, which avoids the domino effect
while allowing the computation, the checkpointing and the “committing” to proceed
asynchronously.

The “Virtual Time” [13] paper introduces a mechanism for optimistic speculative
execution in a distributed system. Processes exchange messages and assume that the
messages they receive are in order. In case this assumption is violated the computation
is rolled back, the messages in the receive queue are reordered and the computation
continues by processing messages in the newly provided order. Processes are implicitly
forced to checkpoint regularly. The specification of the system requires the state of each
process to be saved after each send or receive operation.

While speculations are similar to the concept of lookahead-rollback introduced by
the TimeWarp [13] mechanism, we extend the concept by allowing both explicit and
implicit speculations through programming languages extensions. We also introduce
shared objects as part of the speculative model.

The Rx [14] system uses checkpointing and rollback to enable applications to sur-
vive software bugs. The limitation of the Rx system is that it operates only on isolated
applications.

The main differences between this area of research and our approach are:

– speculations can provide programs with alternate execution paths upon rollback,
– speculations are lightweight checkpoints that are stored in memory and can be cou-

pled with real checkpointing mechanism for increased reliability, and
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– we expose speculations as programming language primitives that have a semantics
closer to that of transactions than that of checkpoints.

5.3 Speculative Execution

Concepts of optimistic execution similar to speculations are used to address optimiza-
tions of I/O operations [15], fault-tolerant networking [16], shared memory systems
[17] and also to increase the performance of processors [18]. By introducing program-
ming language primitives we extend the usability of speculations to a wider range of
applications. BlueFs [19] uses speculations to improve the performance of NFS clients.
However, it only use local, isolated speculations that are not controllable by the user.
Our approach pushes speculative primitives to user level and provides an implementa-
tion that is able to handle distributed speculations and distributed rollback, making it
more generic and more widely applicable.

The angelic nondeterminism [20] concept introduced by Hoare has a semantic that
is similar to speculative execution. It defines nondeterminism (P �Q) as the “execution
of both P and Q concurrently until the environment chooses an event which is possible
for one but not the other.” This implementation of nondeterminism has a high cost in
terms of efficiency. In our speculative model we optimize the angelic nondeterminism
implementation by setting a higher preference for one of the two execution branches,
based on the assumption that we make. This permits a more efficient implementation.
Furthermore, we consider communicating processes and the effects of rollback (abort)
to the state of the entire distributed system.

6 Conclusion and Future Work

The speculative execution model introduced in this paper has the following properties:

1. it eliminates the need for error handling code in writing programs;
2. it provides a mechanism similar to the concept of exceptions from programming

languages that extends to parallel and distributed applications, and enables parallel
applications to do synchronized rollbacks;

3. it provides safe distributed recovery lines for distributed applications;
4. it may improve performance of distributed applications by allowing optimistic ex-

ecution;
5. it enables applications to use a different execution path upon rollback, depending

on how the assumption was invalidated;
6. it can be implemented in practice using a copy-on-write mechanism to build effi-

cient, lightweight, incremental checkpoints of processes, and
7. our representation makes it easy to code the semantics in an automated theorem

prover, like MetaPRL [21], to reason about the correctness of speculative programs.

These properties provide the following advantages:

1. checkpoints generated using speculations introduce less overhead than certain types
of traditional checkpointing, and
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2. if a speculation fails due to an error in the code, the alternate execution path used
when rolling back may be used to execute corrected code generated subsequently.

We are currently investigating the integration of a model-checker, a logging mecha-
nism and our prototype implementation of speculations to provide a generic debugging
tool for distributed applications [22]. We are also implementing a distributed filesystem
with support for speculations and a communication layer in the Linux kernel that would
enable transparent speculative communication.

We believe that this work may open a large number of research opportunities in the
areas of software reliability, of distributed software debugging tools, and of developing
efficient, optimistic communication protocols, to name just a few.
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Abstract. There is an impedance mismatch between message-passing concur-
rency and virtual machines, such as the JVM. VMs usually map their threads
to heavyweight OS processes. Without a lightweight process abstraction, users
are often forced to write parts of concurrent applications in an event-driven style
which obscures control flow, and increases the burden on the programmer.

In this paper we show how thread-based and event-based programming can be
unified under a single actor abstraction. Using advanced abstraction mechanisms
of the Scala programming language, we implemented our approach on unmodi-
fied JVMs. Our programming model integrates well with the threading model of
the underlying VM.

1 Introduction

Concurrency issues have lately received enormous interest because of two converging
trends: First, multi-core processors make concurrency an essential ingredient of effi-
cient program execution. Second, distributed computing and web services are inherently
concurrent. Message-based concurrency is attractive because it might provide a way to
address the two challenges at the same time. It can be seen as a higher-level model
for threads with the potential to generalize to distributed computation. Many message
passing systems used in practice are instantiations of the actor model [1,19]. A popular
implementation of this form of concurrency is the Erlang [3] programming language.
Erlang supports massively concurrent systems such as telephone exchanges by using a
very lightweight implementation of concurrent processes [2,27].

On mainstream platforms such as the JVM [26], an equally attractive implementation
was as yet missing. Their standard concurrency constructs, shared-memory threads with
locks, suffer from high memory consumption and context-switching overhead. There-
fore, the interleaving of independent computations is often modeled in an event-driven
style on these platforms. However, programming in an explicitly event-driven style is
complicated and error-prone, because it involves an inversion of control [32,8].

In previous work [15], we developed event-based actors which let one program
event-driven systems without inversion of control. Event-based actors support the same
operations as thread-based actors, except that the receive operation cannot return nor-
mally to the thread that invoked it. Instead the entire continuation of such an actor has
to be a part of the receive operation. This makes it possible to model a suspended actor
by a continuation closure, which is usually much cheaper than suspending a thread.

A.L. Murphy and J. Vitek (Eds.): COORDINATION 2007, LNCS 4467, pp. 171–190, 2007.
© Springer-Verlag Berlin Heidelberg 2007
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In this paper we present a unification of thread-based and event-based actors. An
actor can suspend with a full stack frame (receive) or it can suspend with just a con-
tinuation closure (react). The first form of suspension corresponds to thread-based,
the second form to event-based programming. The new system combines the benefits
of both models. Threads support blocking operations such as system I/O, and can be
executed on multiple processor cores in parallel. Event-based computation, on the other
hand, is more lightweight and scales to larger numbers of actors. We also present a set
of combinators that allows a flexible composition of these actors.

This paper improves on our previous work in several respects. First, the decision
whether an actor should be thread-less or not is deferred until run-time. An actor may
discard its corresponding thread stack several times. Second, our previous work did
not address aspects of composition. Neither a solution for sequential composition of
event-based actors, nor an approach for the composition of thread-based and event-
based actors in the same program was provided.

The presented scheme has been implemented in the Scala actors library1. It requires
neither special syntax nor compiler support. A library-based implementation has the ad-
vantage that it can be flexibly extended and adapted to new needs. In fact, the presented
implementation is the result of several previous iterations. However, to be easy to use,
the library draws on several of Scala’s advanced abstraction capabilities; notably partial
functions and pattern matching [11].

The user experience gained so far indicates that the library makes concurrent pro-
gramming in a JVM-based system much more accessible than previous techniques. The
reduced complexity of concurrent programming is influenced by the following factors.

– Since accessing an actor’s mailbox is race-free by design, message-based con-
currency is potentially more secure than shared-memory concurrency with locks.
We believe that message-passing with pattern matching is also more convenient in
many cases.

– Actors are lightweight. On systems that support 5000 simultaneously active VM
threads, over 1,200,000 actors can be active simultaneously. Users are thus relieved
from writing their own code for thread-pooling.

– Actors are fully inter-operable with normal VM threads. Every VM thread is treated
like an actor. This makes the advanced communication and monitoring capabilities
of actors available even for normal VM threads.

Related work. Lauer and Needham [20] note in their seminal work that threads and
events are dual to each other. They suggest that any choice of either one of them should
therefore be based on the underlying platform. Almost two decades later, Ousterhout
[28] argues that threads are a bad idea not only because they often perform poorly,
but also because they are hard to use. More recently, von Behren and others [32] point
out that even though event-driven programs often outperform equivalent threaded pro-
grams, they are too difficult to write. The two main reasons are: first, the interactive
logic of a program is fragmented across multiple event handlers (or classes, as in
the state design pattern [12]). Second, control flow among handlers is expressed im-
plicitly through manipulation of shared state [6]. In the Capriccio system [33], static

1 Available as part of the Scala distribution at http://www.scala-lang.org/
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analysis and compiler techniques are employed to transform a threaded program into a
cooperatively-scheduled event-driven program with the same behavior.

There are several other approaches that avoid the above control inversion. However,
they have either limited scalability, or they lack support of blocking operations. Termite
Scheme [14] integrates Erlang’s programming model into Scheme. Scheme’s first-class
continuations are exploited to express process migration. However, their system appar-
ently does not support multiple processor cores. All published benchmarks were run in
a single-core setting. Responders [6] provide an event-loop abstraction as a Java lan-
guage extension. Since their implementation spends a VM thread per event-loop, scal-
ability is limited on standard JVMs. SALSA [31] is a Java-based actor language that
has a similar limitation (each actor runs on its own thread). In addition, message pass-
ing performance suffers from the overhead of reflective method calls. Timber [4] is an
object-oriented and functional programming language designed for real-time embedded
systems. It offers message passing primitives for both synchronous and asynchronous
communication between concurrent reactive objects. In contrast to our programming
model, reactive objects are not allowed to call operations that might block indefinitely.
Frugal objects [13] (FROBs) are distributed reactive objects that communicate through
typed events. FROBs are basically actors with an event-based computation model. Sim-
ilar to reactive objects in Timber, FROBs may not call blocking operations.

Li and Zdancewic [25] propose a language-based approach to unify events and
threads. By integrating events into the implementation of language-level threads, they
achieve impressive performance gains. However, blocking system calls have to be
wrapped in non-blocking operations. Moreover, adding new event sources requires in-
vasive changes to the thread library (registering event handlers, adding event loops etc.).

The actor model has also been integrated into various Smalltalk systems. Actalk
[5] is an actor library for Smalltalk-80 that does not support multiple processor cores.
Actra [30] extends the Smalltalk/V VM to provide lightweight processes. In contrast,
we implement lightweight actors on unmodified VMs.

In section 7 we show that our actor implementation scales to a number of ac-
tors that is two orders of magnitude larger than what purely thread-based systems
such as SALSA support. Moreover, results suggest that our model scales with the
number of processor cores in a system. Our unified actor model provides seam-
less support for blocking operations. Therefore, existing thread-blocking APIs do
not have to be wrapped in non-blocking operations. Unlike approaches such as Ac-
tra our implementation provides lightweight actor abstractions on unmodified Java
VMs.

Our library was inspired to a large extent by Erlang’s elegant programming model.
Erlang [3] is a dynamically-typed functional programming language designed for
programming real-time control systems. The combination of lightweight isolated
processes, asynchronous message passing with pattern matching, and controlled error
propagation has been proven to be very effective [2,27]. One of our main contributions
lies in the integration of Erlang’s programming model into a full-fledged OO-functional
language. Moreover, by lifting compiler magic into library code we achieve compati-
bility with standard, unmodified JVMs. To Erlang’s programming model we add new



174 P. Haller and M. Odersky

forms of composition as well as channels, which permit strongly-typed and secure inter-
actor communication.

The idea to implement lightweight concurrent processes using continuations has
been explored many times [34,18,7]. However, none of the existing techniques are ap-
plicable to VMs such as the JVM because (1) access to the run-time stack is too re-
stricted, and (2) heap-based stacks break interoperability with existing code. However,
the approach used to implement thread management in the Mach 3.0 kernel [9] is at
least conceptually similar to ours. When a thread blocks in the kernel, either it pre-
serves its register state and stack and resumes by restoring this state, or it preserves a
pointer to a continuation function that is called when the thread is resumed. Instead of
function pointers we use closures that automatically lift referenced stack variables on
the heap avoiding explicit state management in many cases.

There is a rich body of work on building fast web servers, using events or a com-
bination of events and threads (for example SEDA [35]). However, a comprehensive
discussion of this work is beyond the scope of this paper.

Our integration of a high-level actor-based programming model, providing strong
invariants and lightweight concurrency, with existing threading models of mainstream
VM platforms is unique to the best of our knowledge. We believe that our approach
offers a qualitative improvement in the development of concurrent software for multi-
core systems.

The rest of this paper is structured as follows. In the next section we introduce
our programming model and explain how it can be implemented as a Scala library.
In section 3 we introduce a larger example that is revisited in later sections. Our uni-
fied programming model is explained in section 4. Section 5 introduces channels as a
generalization of actors. By means of a case study (section 6) we show how our uni-
fied programming model can be applied to programming advanced web applications.
Experimental results are presented in section 7. Section 8 concludes.

2 Programming with Actors

An actor is a process that communicates with other actors by exchanging messages.
There are two principal communication abstractions, namely send and receive. The
expressiona!msg sends messagemsg to actora. Send is an asynchronous operation, i.e.
it always returns immediately. Messages are buffered in an actor’s mailbox. The receive
operation has the following form:

receive {
case msgpat1 => action1
...
case msgpatn => actionn

}

The first message which matches any of the patterns msgpati is removed from the
mailbox, and the corresponding actioni is executed. If no pattern matches, the actor
suspends.
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// base version
val orderMngr = actor {
while (true)
receive {
case Order(sender, item) =>
val o =
handleOrder(sender, item)

sender ! Ack(o)
case Cancel(sender, o) =>
if (o.pending) {
cancelOrder(o)
sender ! Ack(o)

} else sender ! NoAck
case x => junk += x

}
}
val customer = actor {
orderMngr ! Order(self, myItem)
receive {
case Ack(o) => ...

}
}

// version with reply and !?
val orderMngr = actor {
while (true)
receive {
case Order(item) =>
val o =
handleOrder(sender, item)

reply(Ack(o))
case Cancel(o) =>
if (o.pending) {
cancelOrder(o)
reply(Ack(o))

} else reply(NoAck)
case x => junk += x

}
}
val customer = actor {
orderMngr !? Order(myItem) match {
case Ack(o) => ...

}
}

Fig. 1. Example: orders and cancellations

The expression actor { body } creates a new actor which runs the code in body.
The expressionself is used to refer to the currently executing actor. Every Java thread
is also an actor, so even the main thread can executereceive2.

The example in Figure 1 demonstrates the usage of all constructs introduced so far.
First, we define anorderMngractor that tries to receive messages inside an infinite loop.
The receive operation waits for two kinds of messages. The Order(sender, item)
message handles an order for item. An object which represents the order is created
and an acknowledgment containing a reference to the order object is sent back to the
sender. The Cancel(sender, o) message cancels order o if it is still pending. In this
case, an acknowledgment is sent back to the sender. Otherwise aNoAckmessage is sent,
signaling the cancellation of a non-pending order.

The last pattern x in thereceiveoforderMngr is a variable pattern which matches
any message. Variable patterns allow to remove messages from the mailbox that are
normally not understood (“junk”). We also define a customer actor which places an or-
der and waits for the acknowledgment of the order manager before proceeding. Since
spawning an actor (using actor) is asynchronous, the defined actors are executed
concurrently.

Note that in the above example we have to do some repetitive work to implement
request/reply-style communication. In particular, the sender is explicitly included in

2 Using self outside of an actor definition creates a dynamic proxy object which provides an
actor identity to the current thread, thereby making it capable of receiving messages from other
actors.



176 P. Haller and M. Odersky

every message. As this is a frequently recurring pattern, our library has special support
for it. Messages always carry the identity of the sender with them. This enables the
following additional operations:

a !? msg sendsmsg to a, waits for a reply and returns it.
sender refers to the actor that sent the message that was last

received byself.
reply(msg) replies with msg tosender.
a forward msg sendsmsg to a, using the currentsender instead of

self as the sender identity.

With these additions, the example can be simplified as shown on the right-hand side of
Figure 1.

Looking at the examples shown above, it might seem that Scala is a language spe-
cialized for actor concurrency. In fact, this is not true. Scala only assumes the basic
thread model of the underlying host. All higher-level operations shown in the examples
are defined as classes and methods of the Scala library. In the rest of this section, we
look “under the covers” to find out how each construct is defined and implemented. The
implementation of concurrent processing is discussed in section 4.

The send operation ! is used to send a message to an actor. The syntax a ! msg is
simply an abbreviation for the method call a.!(msg), just like x + y in Scala is an
abbreviation for x.+(y). Consequently, we define ! as a method in theActor trait3:

trait Actor {
private val mailbox = new Queue[Any]
def !(msg: Any): unit = ...
...

}

The method does two things. First, it enqueues the message argument in the actor’s
mailbox which is represented as a private field of type Queue[Any]. Second, if the
receiving actor is currently suspended in areceive that could handle the sent message,
the execution of the actor is resumed.

The receive { ... } construct is more interesting. In Scala, the pattern matching
expression inside braces is treated as a first-class object that is passed as an argument to
the receivemethod. The argument’s type is an instance of PartialFunction, which
is a subclass ofFunction1, the class of unary functions. The two classes are defined as
follows.

abstract class Function1[-a,+b] {
def apply(x: a): b

}
abstract class PartialFunction[-a,+b] extends Function1[a,b] {
def isDefinedAt(x: a): boolean

}

Functions are objects which have anapplymethod. Partial functions are objects which
have in addition a methodisDefinedAtwhich tests whether a function is defined for a

3 A trait in Scala is an abstract class that can be mixin-composed with other traits.
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given argument. Both classes are parameterized; the first type parametera indicates the
function’s argument type and the second type parameterb indicates its result type4.

A pattern matching expression { case p1=> e1; ...; case pn=> en} is
then a partial function whose methods are defined as follows.

– TheisDefinedAtmethod returnstrue if one of the patterns pi matches the argu-
ment,false otherwise.

– Theapplymethod returns the value ei for the first pattern pi that matches its argu-
ment. If none of the patterns match, aMatchError exception is thrown.

The two methods are used in the implementation ofreceiveas follows. First, messages
in the mailbox are scanned in the order they appear. Ifreceive’s argumentf is defined
for a message, that message is removed from the mailbox and f is applied to it. On
the other hand, if f.isDefinedAt(m) isfalse for every message m in the mailbox, the
receiving actor is suspended.

Theactor andself constructs are realized as methods defined by theActorobject.
Objects have exactly one instance at run-time, and their methods are similar to static
methods in Java.

object Actor {
def self: Actor ...
def actor(body: => unit): Actor ...
...

}

Note that Scala has different name-spaces for types and terms. For instance, the name
Actor is used both for the object above (a term) and the trait which is the result type
of self and actor (a type). In the definition of the actormethod, the argumentbody
defines the behavior of the newly created actor. It is a closure returning the unit value.
The leading => in its type indicates that it is an unevaluated expression (a thunk).

There is also some other functionality in Scala’s actor library which we have not
covered. For instance, there is a methodreceiveWithinwhich can be used to specify
a time span in which a message should be received allowing an actor to timeout while
waiting for a message. Upon timeout the action associated with a specialTIMEOUTpat-
tern is fired. Timeouts can be used to suspend an actor, completely flush the mailbox,
or to implement priority messages [3].

3 Example

In this section we discuss the benefits of our actor model using a larger example. In the
process we dissect three different implementations: an event-driven version, a thread-
based version, and a version using Scala actors.

4 Parameters can carry + or - variance annotations which specify the relationship between in-
stantiation and subtyping. The -a, +b annotations indicate that functions are contravariant in
their argument and covariant in their result. In other words Function1[X1, Y1] is a subtype
ofFunction1[X2, Y2] ifX2 is a subtype of X1 and Y1 is a subtype of Y2.
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class InOrder(n: IntTree)
extends Producer[int] {
def produceValues = traverse(n)
def traverse(n: IntTree) {
if (n != null) {
traverse(n.left)
produce(n.elem)
traverse(n.right)

}
}

}

class InOrder(n: IntTree)
extends Producer[int] {
def produceValues = traverse(n, {})
def traverse(n: Tree, c: => unit) {
if (n != null) {
traverse(n.left, produce(n.elem,

traverse(n.right, c)))
} else c

}
}

Fig. 2. Producers that generate all values in a tree in in-order

We are going to write an abstraction of producers that provide a standard iterator
interface to retrieve a sequence of produced values. Producers are defined by imple-
menting an abstract produceValues method that calls a producemethod to generate
individual values. Both methods are inherited from a Producer class. As an example,
the left-hand side of figure 2 shows the definition of a producer that generates the values
contained in a tree in in-order.

In a purely event-driven style, there are basically two approaches to specifying traver-
sals, namely writing traversals in continuation-passing style (CPS), and programming
explicit FSMs. The left-hand side of figure 3 shows an event-driven implementation
of producers where the traversal is specified using CPS. The idea is that the produce
method is passed a continuation closure that is called whenever the next value should
be produced. For example, the in-order tree producer mentioned earlier is shown on the
right-hand side of figure 2. Produced values are exchanged using an instance variable
of the producer.

The right-hand side of figure 3 shows a threaded version of the producer abstraction.
In the threaded version the state of the iteration is maintained implicitly on the stack
of a thread that runs theproduceValuesmethod. Produced values are put into a queue
that is used to communicate with the iterator. Requesting the next value on an empty
queue blocks the thread that runs the iterator. Compared to the event-driven version, the
threaded version simplifies the specification of iteration strategies. To define a specific
iterator, it suffices to provide an implementation for the produceValues method that
traverses the tree in the desired order.

Figure 4 shows an implementation of producers in terms of two actors, a producer
actor, and a coordinator actor. The producer runs theproduceValuesmethod, thereby
sending a sequence of values, wrapped in Some messages, to the coordinator. The se-
quence is terminated by a None message. The coordinator synchronizes requests from
clients and values coming from the producer. As in the threaded version, the produce
method does not take a continuation argument.

The actor-based version improves over the event-driven version by not requiring to
specify the traversal in CPS. Moreover, it supports concurrent iterators, since communi-
cation using mailboxes is race-free. For the same reason, there is no need for an explicit
blocking queue as in the threaded version, since this functionality is subsumed by the
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abstract class CPSProducer[T] {
var next: Option[T] = None
var savedCont: () => unit =
() => produceValues

def produce(x: T,
cont: => unit) {

next = Some(x)
savedCont = () => {
next = None; cont

}
}
...

}

abstract class ThreadedProducer[T] {
val produced = new Queue[Option[T]]
def next: Option[T] = synchronized {
while (produced.isEmpty) {wait()}
produced.dequeue

}
new Thread(new Runnable() {
def run() {
produceValues
produced += None

}
}).start()
def produce(x: T) = synchronized {
produced += Some(x)
if (produced.length == 1) notify()

}
...

}

Fig. 3. Event-driven and threaded producers

abstract class ActorProducer[T] {
def produce(x: T) {
coordinator ! Some(x)

}
private val producer = actor {
produceValues
coordinator ! None

}
...

}

private val coordinator = actor {
loop { receive {
case ’next => receive {
case x: Option[_] => reply(x)

}
}}

}

Fig. 4. Implementation of the producer and coordinator actors

actors’ mailboxes. We believe that the use of blocking queues for communication is so
common that it is worth making them generally available in the form of mailboxes for
concurrent actors.

4 Unified Actors

Concurrent processes such as actors can be implemented using one of two implemen-
tation strategies:

– Thread-based implementation: The behavior of a concurrent process is defined by
implementing a thread-specific method. The execution state is maintained by an
associated thread stack.

– Event-based implementation: The behavior is defined by a number of (non-nested)
event handlers which are called from inside an event loop. The execution state of a
concurrent process is maintained by an associated record or object.
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Often, the two implementation strategies imply different programming models. Thread-
based models are usually easier to use, but less efficient (context switches, memory
requirements), whereas event-based models are usually more efficient, but very difficult
to use in large designs [24,32,8].

Most event-based models introduce an inversion of control. Instead of calling block-
ing operations (e.g. for obtaining user input), a program merely registers its interest to
be resumed on certain events (e.g. signaling a pressed button). In the process, event han-
dlers are installed in the execution environment. The program never calls these event
handlers itself. Instead, the execution environment dispatches events to the installed
handlers. Thus, control over the execution of program logic is “inverted”. Because of
inversion of control, switching from a thread-based to an event-based model normally
requires a global re-write of the program.

In our library, both programming models are unified. As we are going to show, this
unified model allows programmers to trade-off efficiency for flexibility in a fine-grained
way. We present our unified design in three steps. First, we review a thread-based im-
plementation of actors. Then, we show an event-based implementation that avoids in-
version of control. Finally, we discuss our unified implementation. We apply the results
of our discussion to the case study of section 3.

Thread-based actors. Assuming a basic thread model is available in the host environ-
ment, actors can be implemented by simply mapping each actor onto its own thread.
In this naïve implementation, the execution state of an actor is maintained by the stack
of its corresponding thread. An actor is suspended/resumed by suspending/resuming its
thread. On the JVM, thread-based actors can be implemented by subclassing theThread
class:

trait Actor extends Thread {
private val mailbox = new Queue[Any]
def !(msg: Any): unit = ...
def receive[R](f: PartialFunction[Any, R]): R = ...
...

}

The principal communication operations are implemented as follows.

– Send. The message is enqueued in the actor’s mailbox. If the receiver is currently
suspended in a receive that could handle the sent message, the execution of its
thread is resumed.

– Receive. Messages in the mailbox are scanned in the order they appear. If none of
the messages in the mailbox can be processed, the receiver’s thread is suspended.
Otherwise, the first matching message is processed by applying the argument partial
functionf to it. The result of this application is returned.

Event-based actors. The central idea of event-based actors is as follows. An actor that
waits in a receive statement is not represented by a blocked thread but by a closure that
captures the rest of the actor’s computation. The closure is executed once a message
is sent to the actor that matches one of the message patterns specified in the receive.
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The execution of the closure is “piggy-backed” on the thread of the sender. When the
receiving closure terminates, control is returned to the sender by throwing a special
exception that unwinds the receiver’s call stack.

A necessary condition for the scheme to work is that receivers never return normally
to their enclosing actor. In other words, no code in an actor can depend on the termi-
nation or the result of a receive block. This is not a severe restriction in practice, as
programs can always be organized in a way so that the “rest of the computation” of an
actor is executed from within a receive. Because of its slightly different semantics we
call the event-based version of the receive operationreact.

In the event-based implementation, instead of subclassing the Thread class, a pri-
vate field continuation is added to the Actor trait that contains the rest of an actor’s
computation when it is suspended:

trait Actor {
private var continuation: PartialFunction[Any, unit]
private val mailbox = new Queue[Any]
def !(msg: Any): unit = ...
def react(f: PartialFunction[Any, unit]): Nothing = ...
...

}

At first sight it might seem strange to represent the rest of an actor’s computation by a
partial function. However, note that only when an actor suspends, an appropriate value
is stored in the continuation field. An actor suspends when react fails to remove a
matching message from the mailbox:

def react(f: PartialFunction[Any, unit]): Nothing = {
mailbox.dequeueFirst(f.isDefinedAt) match {
case Some(msg) => f(msg)
case None => continuation = f; suspended = true

}
throw new SuspendActorException

}

Note that react has return type Nothing. In Scala’s type system a method has return
typeNothing iff it never returns normally. In the case ofreact, an exception is thrown
for all possible argument values. This means that the argument f of react is the last
expression that is evaluated by the current actor. In other words, f always contains the
“rest of the computation” ofself5. We make use of this in the following way.

A partial function, such as f, is usually represented as a block with a list of patterns
and associated actions. If a message can be removed from the mailbox (tested using
dequeueFirst) the action associated with the matching pattern is executed by applying
f to it. Otherwise, we remember f as the “continuation” of the receiving actor. Since f
contains the complete execution state we can resume the execution at a later point when

5 Not only this, but also the complete execution state, in particular, all values on the stack acces-
sible from within f. This is because Scala automatically constructs a closure object that lifts
all potentially accessed stack locations into the heap.
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a matching message is sent to the actor. The instance variablesuspended is used to tell
whether the actor is suspended. If it is, the value stored in thecontinuation field is a
valid execution state. Finally, by throwing a special exception, control is transferred to
the point in the control flow where the current actor was started or resumed.

An actor is started by calling itsstartmethod. A suspended actor is resumed if it is
sent a message that it waits for. Consequently, theSuspendActorException is handled
in thestartmethod and in the send method. Let’s take look at the send method.

def !(msg: Any): unit =
if (suspended && continuation.isDefinedAt(msg))
try { continuation(msg) }
catch { case SuspendActorException => }

else mailbox += msg

If the receiver is suspended, we check whether the message msg matches any of the
patterns of the partial function stored in the continuation field of the receiver. In
that case, the actor is resumed by applying continuation to msg. We also handle
SuspendActorException since inside continuation(msg) there might be a nested
react that suspends the actor. If the receiver is not suspended or the newly sent mes-
sage does not enable it to continue,msg is appended to the mailbox.

Note that the presented event-based implementation forced us to modify the original
programming model: In the thread-based model, the receiveoperation returns the re-
sult of applying an action to the received message. In the event-based model, thereact
operation never returns normally, i.e. it has to be passed explicitly the rest of the compu-
tation. However, we present below combinators that hide these explicit continuations.
Also note that when executed on a single thread, an actor that calls a blocking opera-
tion prevents other actors from making progress. This is because actors only release the
(single) thread when they suspend in a call toreact.

The two actor models we discussed have complementary strengths and weaknesses:
Event-based actors are very lightweight, but the usage of the react operation is re-
stricted since it never returns. Thread-based actors, on the other hand, are more flexible:
Actors may call blocking operations without affecting other actors. However, thread-
based actors are not as scalable as event-based actors.

Unifying actors. A unified actor model is desirable for two reasons: First, advanced ap-
plications have requirements that are not met by one of the discussed models alone. For
example, a web server might represent active user sessions as actors, and make heavy
use of blocking I/O at the same time. Because of the sheer number of simultaneously
active user sessions, actors have to be very lightweight. Because of blocking operations,
pure event-based actors do not work very well. Second, actors should be composable. In
particular, we want to compose event-based actors and thread-based actors in the same
program.

In the following we present a programming model that unifies thread-based and
event-based actors. At the same time, our implementation ensures that most actors
are lightweight. Actors suspended in a react are represented as closures, rather than
blocked threads.
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Actors can be executed by a pool of worker threads as follows. During the execution
of an actor, tasks are generated and submitted to a thread pool for execution. Tasks are
implemented as instances of classes that have a singlerunmethod:

class Task extends Runnable {
def run() { ... }

}

A task is generated in the following three cases:

1. Spawning a new actor usingactor { body } generates a task that executesbody.
2. Calling react where a message can be immediately removed from the mailbox

generates a task that processes the message.
3. Sending a message to an actor suspended in a react that enables it to continue

generates a task that processes the message.

All tasks have to handle the SuspendActorException which is thrown whenever an
actor suspends inside react. Handling this exception transfers control to the end of
the task’s runmethod. The worker thread that executed the task is then free to execute
the next pending task. Pending tasks are kept in a task queue inside a global scheduler
object.6

The basic idea of our unified model is to use a thread pool to execute actors, and to
resize the thread pool whenever it is necessary to support general thread operations. If
actors use only operations of the event-based model, the size of the thread pool can be
fixed. This is different if some of the actors use blocking operations such as receive
or system I/O. In the case where every worker thread is occupied by a suspended actor
and there are pending tasks, the thread pool has to grow.

In our library, system-induced deadlocks are avoided by increasing the size of the
thread pool whenever necessary. It is necessary to add another worker thread whenever
there is a pending task and all worker threads are blocked. In this case, the pending
task(s) are the only computations that could possibly unblock any of the worker threads
(e.g. by sending a message to a suspended actor.) To do this, a scheduler thread (which
is separate from the worker threads of the thread pool) periodically checks if there is a
task in the task queue and all worker threads are blocked. In that case, a new worker
thread is added to the thread pool that processes any remaining tasks.

Unfortunately, on the JVM there is no safe way for library code to find out if a thread
is blocked. Therefore, we implemented a conservative heuristic that approximates the
predicate “all worker threads blocked”. The approximation uses a time-stamp of the last
“library activity”. If the time-stamp is not recent enough (i.e. it has not changed since a
multiple of scheduler runs), the predicate is assumed to hold, i.e. it is assumed that all
worker threads are blocked. We maintain a global time-stamp that is updated on every
call to send, receive etc.

Example. Revisiting our example of section 3, it is possible to economize one thread
in the implementation of Producer. As shown in Figure 5, this can be achieved by

6 Implementations based on work-stealing let worker threads have their own task queues, too.
As a result, the global task queue is less of a bottle-neck.
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private val coordinator = actor {
loop { react {
// ... as in Figure 4

}}}

Fig. 5. Implementation of the coordinator actor using react

simply changing the call to receive in the coordinator process into a call to react.
By callingreact in its outer loop, the coordinator actor allows the scheduler to detach
it from its worker thread when waiting for a Nextmessage. This is desirable since the
time between client requests might be arbitrarily long. By detaching the coordinator,
the scheduler can re-use the worker thread and avoid creating a new one.

Composing actor behavior. Without extending the unified actor model, defining an
actor that executes several given functions in sequence is not possible in a modular
way.

For example, consider the two methods below:

def awaitPing = react { case Ping => }
def sendPong = sender ! Pong

It is not possible to sequentially composeawaitPingandsendPongas follows:

actor { awaitPing; sendPong }

Since awaitPing ends in a call to reactwhich never returns, sendPongwould never
get executed. One way to work around this restriction is to place the continuation into
the body ofawaitPing:

def awaitPing = react { case Ping => sendPong }

However, this violates modularity. Instead, our library provides anandThencombinator
that allows actor behavior to be composed sequentially. UsingandThen, the body of the
above actor can be expressed as follows:

{ awaitPing } andThen { sendPong }

andThen is implemented by installing a hook function in the first actor. This hook
is called whenever the actor terminates its execution. Instead of exiting, the code of
the second body is executed. Saving and restoring the previous hook function permits
chained applications ofandThen.

The Actor object also provides a loop combinator. It is implemented in terms of
andThen:

def loop(body: => unit) = body andThen loop(body)

Hence, the body ofloop can end in an invocation ofreact.

5 Channels

In the programming model that we have described so far, actors are the only entities that
can send and receive messages. Moreover, the receive operation ensures locality, i.e.
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only the owner of the mailbox can receive messages from it. Therefore, race conditions
when accessing the mailbox are avoided by design. Types of messages are flexible: They
are usually recovered through pattern matching. Ill-typed messages are ignored instead
of raising compile-time or run-time errors. In this respect, our library implements a
dynamically-typed embedded domain-specific language.

However, to take advantage of Scala’s rich static type system, we need a way to
permit strongly-typed communication among actors. For this, we use channels which
are parameterized with the types of messages that can be sent to and received from it,
respectively. Moreover, the visibility of channels can be restricted according to Scala’s
scoping rules. That way, communication between sub-components of a system can be
hidden. We distinguish input channels from output channels. Actors are then treated as
a special case of output channels:

trait Actor extends OutputChannel[Any] { ... }

Selective communication. The possibility for an actor to have multiple input channels
raises the need to selectively communicate over these channels. Up until now, we have
shown how to use receive to remove messages from an actor’s mailbox. We have
not yet shown how messages can be received from multiple input channels. Instead of
adding a new construct, we generalizereceive to work over multiple channels.

For example, a model of a component of an integrated circuit can receive values from
both a control and a data channel using the following syntax:

receive {
case DataCh ! data => ...
case CtrlCh ! cmd => ...

}

Our library also provides anorElsecombinator that allows reactions to be composed as
alternatives. For example, usingorElse, our electronic component can inherit behavior
from a superclass:

receive {
case DataCh ! data => ...
case CtrlCh ! cmd => ...

} orElse super.reactions

6 Case Study

In this section we show how our unified actor model addresses some of the challenges
of programming web applications. In the process, we review event- and thread-based
solutions to common problems, such as blocking I/O operations. Our goal is then to
discuss potential benefits of our unified approach. Advanced web applications typical
pose at least the following challenges to the programmer:

– Blocking operations. There is almost always some functionality that is implemented
using blocking operations. Possible reasons are lack of suitable libraries (e.g. for
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non-blocking socket I/O), or simply the fact that the application is built on top of a
large code basis that uses potentially blocking operations in some places. Typically,
rewriting infrastructure code to use non-blocking operations is not an option.

– Non-blocking operations. On platforms such as the JVM, web application servers
often provide some parts (if not all) of their functionality in the form of non-
blocking APIs for efficiency. Examples are request handling, and asynchronous
HTTP requests.

– Race-free data structures. Advanced web applications typically maintain user pro-
files for personalization. These profiles can be quite complex (some electronic
shopping sites apparently track every item that a user visits). Moreover, a single
user may be logged in on multiple machines, and issue many requests in parallel.
This is common on web sites, such as those of electronic publishers, where single
users represent whole organizations. It is therefore mandatory to ensure race-free
accesses to a user’s profile.

Thread-based approaches. VMs overlap computation and I/O by transparently switch-
ing among threads. Therefore, even if loading a user profile from disk blocks, only
the current request is delayed. Non-blocking operations can be converted to blocking
operations to support a threaded style of programming: after firing off a non-blocking
operation, the current thread blocks until it is notified by a completion event. How-
ever, threads do not come for free. On most mainstream VMs, the overhead of a large
number of threads–including context switching and lock contention–can lead to serious
performance degradation [35,10]. Overuse of threads can be avoided by using bounded
thread pools [21]. Shared resources such as user profiles have to be protected using
synchronization operations. This is known to be particularly hard using shared-memory
locks [23]. We also note that alternatives such as transactional memory [16,17], even
though a clear improvement over locks, do not provide seamless support for I/O oper-
ations as of yet. Instead, most approaches require the use of compensation actions to
revert the effects of I/O operations, which further complicate the code.

Event-based approaches. In an event-based model, the web application server gener-
ates events (network and I/O readiness, completion notifications etc.) that are processed
by event handlers. A small number of threads (typically one per CPU) loop continu-
ously removing events from a queue and dispatching them to registered handlers. Event
handlers are required not to block since otherwise the event-dispatch loop could be
blocked, which would freeze the whole application. Therefore, all operations that could
potentially block, such as the user profile look-up, have to be transformed into non-
blocking versions. Usually, this means executing them on a newly spawned thread, or
on a thread pool, and installing an event handler that gets called when the operation
completed [29]. Usually, this style of programming entails an inversion of control that
causes the code to loose its structure and maintainability [6,8].

Scala actors. In our unified model, event-driven code can easily be wrapped to provide
a more convenient interface that avoids inversion of control without spending an extra
thread [15]. The basic idea is to decouple the thread that signals an event from the thread
that handles it by sending a message that is buffered in an actor’s mailbox. Messages
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sent to the same actor are processed atomically with respect to each other. Moreover,
the programmer may explicitly specify in which order messages should be removed
from its mailbox. Like threads, actors support blocking operations using implicit thread
pooling as discussed in section 4. Compared to a purely event-based approach, users are
relieved from writing their own ad-hoc thread pooling code. Since the internal thread
pool can be global to the web application server, the thread pool controller can leverage
more information for its decisions [35]. Finally, accesses to an actor’s mailbox are race-
free. Therefore, resources such as user profiles can be protected by modeling them as
(thread-less) actors.

7 Preliminary Results

We realize that performance across threads and events may involve a number of non-
trivial trade-offs. A thorough experimental evaluation of our framework is therefore
beyond the scope of this paper, and will have to be addressed in future work. However,
the following basic experiments show that performance of our framework is at least
comparable to those of both thread-based and event-based systems.
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Fig. 6. Throughput (number of token passes per second) for a fixed number of 10 tokens

Message Passing. In the first benchmark we measure throughput of blocking operations
in a queue-based application. The application is structured as a ring of n producers/con-
sumers (in the following called processes) with a shared queue between each of them.
Initially, k of these queues contain tokens and the others are empty. Each process loops
removing an item from the queue on its right and placing it in the queue on its left.

The following tests were run on a 1.80GHz Intel Pentium M processor with 1024
MB memory, running Sun’s Java HotSpot™VM 1.5.0 under Linux 2.6.15. We set the
JVM’s maximum heap size to 512 MB to provide for sufficient physical memory to
avoid any disk activity. In each case we took the median of 5 runs. The execution
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times of three equivalent implementations written using (1) our actor library, (2) pure
Java threads, and (3) SALSA (version 1.0.2), a state-of-the-art Java-based actor lan-
guage [31], respectively, are compared. Figure 6 shows the number of token passes
per second (throughput) depending on the ring size. Note that throughput is given on
a logarithmic scale. For less than 3000 processes, pure Java threads are between 3.7
(10 processes) and 1.3 (3000 processes) times faster than Scala actors. Interestingly,
throughput of Scala actors remains basically constant (at about 30,000 tokens per sec-
ond), regardless of the number of processes. In contrast, throughput of pure Java threads
constantly decreases as the number of processes increases. The VM is unable to create
a ring with 5500 threads as it runs out of heap memory. In contrast, using Scala actors
the ring can be operated with as many as 600,000 processes (since every queue is also
an actor this amounts to 1,200,000 simultaneously active actors.) Throughput of Scala
actors is on average over 13 times higher than that of SALSA.
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Multi-core scalability. In the second experiment, we are interested in the speed-up
that is gained by adding processor cores to a system. The following tests were run
on a multi-processor with 4 dual-core Opteron 64-Bit processors (2.8 GHz each) with
16 GB memory, running Sun’s Java HotSpot™64-Bit Server VM 1.5.0 under Linux
2.6.16. In each case we took the median of 5 runs. We ran direct translations of the
Fibonacci (Fib) and Gaussian integration (Integ) programs distributed with Doug Lea’s
high-performance fork/join framework for Java (FJ) [22]. The speed-ups as shown in
figure 7 are linear as expected since the programs run almost entirely in parallel.

8 Conclusion

In this paper we have shown how thread-based and event-based models of concur-
rency can be unified under a single abstraction of actors. While abstracting commonal-
ities, our approach allows programmers to trade-off efficiency for flexibility in a fine-
grained way. Scala’s actor library provides a common programming model that permits
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high-level communication through messages and pattern matching. We believe that our
work closes an important gap between message-passing concurrency and popular VM
platforms.

Acknowledgments. We would like to thank our shepherd, Doug Lea, and the anonymous
reviewers for their helpful comments.
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Abstract. We present a generalized committed choice construct for con-
current programs that interact with a shared store. The generalized com-
mitted choice (GCC) allows multiple computations from different alter-
natives to occur concurrently and later commit to one of them. GCC
generalizes the traditional committed choice in Dijkstra’s Guarded Com-
mand Language to handle don’t know non-determinism and also allows
for speculative computation. The main contribution of the paper is to
introduce the GCC programming construct and the associated seman-
tics framework for formalizing GCC. We give some experimental results
which show that the power of GCC can be made practical.

1 Introduction

Nondeterminism means that a computation may need to choose between two or
more choices [9]. Don’t care non-determinism, or committed choice, is the most
commonly used form of nondeterminism in concurrent programming systems,
e.g. Occam [10] and Concurrent Prolog [17]. It’s also the basis of many non-
deterministic programming constructs such as guarded commands [5], CSP [9],
and π-calculus [13]. The original form of committed choice is the guarded com-
mand set (Dijkstra’s guard) [5], G1 → S1 G2 → S2 · · · Gn → Sn

where Gi is a logical expression, the guard, and Si is a list of statements. The
meaning of Dijkstra’s guard is that one can choose any Si to execute so long as
its guard Gi is true. Otherwise if all guards are false, then it aborts. Thus the
choice gives rise to a form of don’t care non-determinism in contrast with the
don’t know non-determinism used in OR-parallel logic programming [7] which
explores a search space non-deterministically to find solutions.

In a concurrent programming setting, a meaningful program contains opera-
tions that manipulate its environment allowing it to interact with other running
programs. A key characteristic of Dijkstra’s guard (also guards in Concurrent
Logic/Constraint Programming [16]) is that guard Gi is meant as a test to choose
an alternative to commit to before performing any other operations which modify
the environment. We call this, early committed choice.

In this paper, we propose a new choice construct which allows the commit
to occur anywhere within the choice. We call this, generalized committed choice
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(GCC), since it generalizes the idea of early committed choice. We assume that
all processes are operating in a shared environment in which all variables are
global and shared (similar to [11]). We call the environment a store. The processes
don’t interact with each other directly, but instead communicate through mod-
ifying the values of the variables in the store. The only operations allowed are
global variable assignments.

Next we will give a simple motivating example which explains why GCC is
interesting along with some related work. The rest of the paper is organized
as follows. Section 2 presents a small programming language which we embed
GCC. Section 3 introduces the basic runtime structure for GCC. The operational
semantics of GCC is given in Section 4. The meaning and alternatives of commit
is discussed in section 5. Section 6 discusses how to make GCC practical and
gives some experimental results.

1.1 A Motivating Example

The following example motivates the kinds of application of non-deterministic
choice which are ideal applications for GCC. Imagine two people, among others,
participate in an online automated second hand product trading system.

Bob is a photographer who wants to upgrade his equipment. He has two
choices: either sell his old camera and buy a better one; or, keep the old camera
but sell his old lens and buy a better lens. To avoid ending up with two cameras or
selling all his equipment but unable to upgrade, only one scenario should occur.
Jill wants to downgrade and either sell her good camera or her good lens. Using
the proceeds from one of the above sales, she can now buy an average camera.
To maximize buying and selling opportunities, we assume that the buying and
selling of items can happen in any order.

We can program the requirements of Bob and Jill as follows. Exclusive choice
is written as XOR. We assume that the market has a clearing function, which
matches a buy action with a sell action, and vice versa. Thus both the buy and
sell operations are synchronized and block if the corresponding action is not
present.

Bob:
(buy(goodlens); sell(averagelens))

XOR
(buy(goodcam); sell(averagecam))

Jill:
(sell(goodlens); buy(averagecam))

XOR
(sell(goodcam); buy(averagecam))

It is easy to see that there is a perfect match between Bob and Jill as Bob can
buy Jill’s good camera and then sell Jill his average camera. Thus there is a way
in which both parties can be satisfied. However, since each party is not directly
aware of the other, in this setting, we want them to be able to act independently.

Bob could choose one of the following two non-speculative strategies. The first
is for Bob to take a bet on one of the choices and commit to that choice. For
example, choose on the first choice that gets to make some progress. That is, if
a good lens is for sale, then buy the good lens and take a risk by waiting for a
buyer for the average lens. This ignores the second possibility to buy a better
camera. Such a “bet-and-risk-it” strategy has obvious pitfalls. What happens
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if one makes the wrong choice? In the example above, if Bob’s program finds
a match with Jill’s choice of selling good lens first, then the lens (1st) choice
of Bob will be committed and the camera (2nd) choice will be eliminated. But
as it turns out, Jill wants to buy an average camera and not an average lens
after buying a good lens. As such, Bob and Jill are deadlocked, both waiting to
complete their trade.

The second and more conservative strategy is for Bob to wait in both of his
choices until the conditions for both buying and selling actions are met, and then
do both actions atomically. While this is a safer option than the previous one,
Bob will certainly miss the trading opportunity with Jill as Jill will not buy his
average camera until she has sold her good camera. Both parties will be blocked
even when there is a potential solution available.

Although our simple example has only two players, in a real life marketplace,
much larger dependency cycles involving more parties may exist. These cyclic
dependencies cannot be resolved through the use of the above early commit
strategies. As we shall see next, the late commit in GCC solves this problem.

1.2 The Generalized Committed Choice Model

The generalized committed choice allows a new strategy which increases the
probability of getting a solution. As Bob has two choices, to maximize his
chances, he would like to be able to attempt both choices simultaneously and
non-deterministically, and choose the one which succeeds. This leads to a form
of speculative computation. We achieve this by having the computation in each
choice operate in its own independent “world” containing an independent store.
So one world does not effect the other. Now, when Jill comes to the system,
her program will join the two existing worlds Bob’s program has created. Since
Jill also has two choices, her program will further split each world it is living
in, and this creates four worlds altogether, each of which represents a possible
interaction between Bob’s and Jill’s choices.

Here, everybody is given the full opportunity to complete their actions: while
Bob may take Jill’s good lens and get stuck in one world since he cannot sell his
good lens; he may able to buy Jill’s good camera and sell his average camera to
her in another world and then eventually complete the transaction. Thus we also
need a way of removing unwanted possibilities which represent other worlds and
computations. In every world, Bob’s and Jill’s computation operate in their own
independent reality. They can buy and sell items as if there is no speculation.

The model of GCC enables a programming paradigm where a computation
can have a number of distinct possibilities. For simplicity, let us say there are
two choices, α and β. We assume that the computations operate on a shared
store which can change over time due to external events or through actions of a
program. In a choice construct, we allow both α and β to proceed concurrently
but isolated from each other. Although there is a form of isolation among choices
within a program, an important property is that multiple programs (e.g. Bob
and Jill’s programs) interact with each other through different versions of the
store, where each store represent one possibility. After some computation, one
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of the choices, say α can choose to commit. This has the effect as if the other
possibility β never existed. When we have more than one user, all user choices
are multiplied to form a number of worlds. Allowing speculation means that
computation results in multiple rather than one store/world.

This paper proposes a programming model for speculation in a new don’t-
know non-determinism and concurrency context. The central contribution is a
new programming construct GCC which generalizes early committed choice.
We formalize the complicated semantics of GCC. The main challenge of the
semantics is to deal with the notion of commit in the context of multiple worlds.
We demonstrate in some experiments that the expressive power can be made
practical. In our producer-consumer experiments, the growth in the number of
worlds, total size of the store in all the worlds, and the number of program
instances executing can be contained.

1.3 Related Work

A database transaction provides atomicity and isolation [15]. This can be used
in the second strategy depicted earlier. The drawback is that it is unlikely to give
the desired result since that means all blocking conditions are satisfied at once.
Also, relational databases and SQL do not handle non-determinism, so Bob and
Jill cannot specify their choices.

Long-lived transactions such as “Sagas” [6] do away with the isolation prop-
erty of transactions. Partial changes to the database are visible to other trans-
actions. Only one level of nested transactions is allowed. Operations in Saga can
be unsafe, i.e. if one process cannot go through, then the whole saga needs to be
compensated. Since there is concurrency, sometimes no compensation operations
are possible, and hence the system becomes irreparably inconsistent. Saga does
not handle our example as it does not provide non-deterministic choice. Even if
Saga is extended, multiple choices are operating in the same environment, which
means once Bob has bought the good lens for example, he will not have the
money to pay for good camera, even if it is available. Furthermore, the compen-
sating transactions have to be provided by the user program rather than being
resolved by the system.

Dijkstra’s guards [5,14] and concurrent constraint programming (CCP) [16]
techniques such as GHC [19] and Oz [18] use early committed choice to handle
non-determinism. Early committed choice can be used to implement the bet-and-
risk-it strategy, but as we have shown, this may lead to a blocked/deadlocked
computation. Furthermore, CCP languages require monotonic stores and is thus
not applicable in our context. Perhaps the closest relative to GCC is the deep
guards in GHC and some other CCP languages, where recursion is allowed in
the guards. However, although commit can be postponed with deep guards only
reads and no writes are allowed in the guards and hence the store is not changed.
This is in contrast with the GCC model where updates to the store are permitted
in the choices before commit.

Transaction Logic (T R) [1] is an algebra that offers a logical framework to
model traditional database transactions. It supports the sequence of transactions
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(with updates) through the ⊗ operator (similar to our “;”) and non-determinism
through the ⊕ operator. The non-determinism here is equivalent to an early-
committed choice. T R, however, does not support long-lived transactions. Con-
current Transaction Logic (CT R) [2] adds the concurrent conjunction to T R,
which gives parallel interleaving of different sequences. It is different from our
notion of late choice where each choice runs in isolation.

In composable memory transactions (CMT), the orElse construct [8] provides
a way to state several alternatives in memory transactions. The transaction s1
‘orElse‘ s2 first runs s1; if it blocks (retries), then s1 is abandoned with no
effect, s2 is run. If s2 is also blocked (retries), then the whole transaction retries.
In a way, the orElse construct offers a don’t know type of non-determinism as it
attempts the choices one by one until a satisfying one is found. The semantics of
orElse differs from GCC, in the former the choices are attempted sequentially,
while GCC allows all choices in parallel. In addition, CMT requires isolation
of transactions, whereas GCC allows interactions between the programs during
the resolution of don’t-know choices. Hence, CMT cannot be used to code our
Bob/Jill example directly.

In more recent development, transactional events [4] introduced a choice con-
struct chooseEvt in a synchronous message passing setting. This construct is
similar to the orElse in that there is no isolation between the choices, though
the two choices are executed concurrently. Therefore it is not able to solve Bob
and Jill’s problem, either. Moreover, transactional event does not offer an explicit
commit operation, therefore chooseEvt is not able to commit to a branch before
the entire branch has been successfully completed, whereas GCC programs can
commit a branch anywhere a commit point is reached.

The Event-Condition-Action rules in active databases [20,3] provide some de-
gree of reactivity to the users, it is still early committed choice. In addition, the
actions carried out in ECA rules are either simple database read/write oper-
ations or user-defined procedure calls. But in all cases, these actions are done
atomically and in isolation, hence interleavings are not possible.

2 Programming with GCC

We illustrate the programming paradigm of GCC with the following simple set-
ting. There are a number concurrent or parallel programs interacting with a com-
mon runtime system, providing a global computation environment or a global
memory we call a store. Without loss of generality, we assume programs do not
use any local variables. Synchronization is achieved by use of the common store
and the use of a blocking guarded action. For now, we simply assume the store
is a piece of shared memory which contains variable-value mappings. The main
operation on the store are variable assignments which are atomic.

We now present simple programming constructs for programming with GCC.
Although we have chosen a simple setting, it should be clear that GCC can
be easily integrated into more complex programming languages and concur-
rent/parallel systems. For simplicity, we have used used a simple unstructured
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shared memory store. In the context of actual applications, a database store is
consistent with programming in GCC and the semantics presented here.

We introduce a minimal concurrent language with GCC for programs r defined
as follows:

r ::= noop no operation
| x := v atomic assignment
| if c then r1 else r2 conditional
| while c do r1 loop
| c ⇒ δ guarded atomic action
| r1; r2 sequence
| r1 ⊕ r2 GCC
| cm commit this choice
| cu commit other choice

The first four constructs are rather standard and thus require little explana-
tion. The assignment operation assigns a value v to a global variable x in the
store atomically. Boolean condition c is tested in both the conditional, loop and
guard constructs. An example of c is x + y ≤ 10.

Guarded atomic action, or guard in short, is provided to allow for reactive
behavior and enable synchronization among the programs. c ⇒ δ, blocks until
condition c is true w.r.t. the store and then atomically executes δ. δ is an action
such as noop, assignment, cm and cu, all w.r.t. the store. A guarded sequence of
actions can be decomposed as:

c ⇒ (δ1; δ2; . . . ; δn) ≡ c ⇒ δ1; c ⇒ δ2; . . . ; c ⇒ δn.

The choice construct, r1 ⊕ r2, defines two computations r1 and r2 which are
to be executed speculatively. For simplicity, we only deal with binary choices,
and it is straightforward to extend to an arbitrary number of choices. Both r1
and r2 execute concurrently with any updates isolated from each other. Nested
choices are allowed. Unless otherwise stated, in the remainder of this paper, we
refer to generalized committed choice simply as choice.

Within a choice, there are two special operations, namely cm and cu, which
stand for “commit me” and “commit you”. These can only be used within the
scope of a choice where they refer to the innermost enclosing choice structure.
cm expresses the intention to commit to this branch of a choice and to remove
the other branch as if it didn’t exist; cu expresses the intention to terminate this
branch of a choice and commit to the other branch. Notice that cm and cu are
not symmetrical since after executing cm in a branch, the program can continue,
whereas in the case of cu; the program instance is halted. If cm and cu are used
outside the scope of a choice, they have no effect. Furthermore, only the first use
of cm or cu has any effect within a choice branch. For example, in this program,

(r1 ⊕1 ((r2; cm; cm) ⊕2 r3)),

only the first cm after r2 is effective and refers to the left branch of choice ⊕2.
The second cm is ignored, and it is not referring to the right branch of choice ⊕1.
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Note we numbered the choice structures by subscripts just for the succinctness
of explanation.

Static scoping is used for simplicity with cm and cu. Furthermore, we require
that every choice branch must have a commit operation, so that a choice must
eventually be “committed”. This can be achieved by systematically adding cm
to the end of every choice.

We remark that we have not defined a parallel composition construct here
because our setting is of an open system where independent programs running in
parallel can be introduced from the outside. One could, for example, implement
parallel composition as the birth of a new program (see Section 4.1). Thus, one
could add “fork-like” constructs to the language. We haven’t done so for the
interest of simplicity.

The Bob example can be re-written below in our simple programming lan-
guage as follows:
(goodlens ≥ 1 ⇒

goodlens := goodlens - 1;
averagelens := averagelens + 1); cm

⊕
(goodcam ≥ 1 ⇒

goodcam := goodcam - 1;
averagecam := averagecam + 1); cm

For simplicity, we have not dealt with the details of the transactions and have
only expressed the requirements of the example as availabilities of the items.

Time variables are useful to write conditions involving external time. For
example, this can be used to express timeouts. Consider a program fragment r
which is to be executed as long as the timeout hasn’t expired. This is expressed
as, r ⊕ ((time ≥ t) ⇒ cm), so that when time has reached t, the right branch
can commit and the effect is that r is aborted.

3 Worlds and Multi-worlds

We present informally a suitable runtime structure for GCC. We define a world,
a store and programs and extend the definitions to multi-worlds.

3.1 World

The basic computation space for GCC is a world, and is denoted by wi, where i
is a unique identifier for a world. One can think of a world as a shared memory
computer running multiple processes. Associated with a world is its memory, we
call this a store, and is denoted by Δ. The store contains, in its simplest form,
a set of variable-value mappings, such as {x = 2, y = −1, z = 0}.

Every world executes a dynamic number of processes or programs in an in-
terleaving model of concurrency. New programs may enter the world by birth, or
depart the world by death, or completion. Because of such dynamism, we say the
world is open. Programs execute when the system picks one continuation from
the set, and advances it by executing an instruction, known as a program step.
Initially, cids is empty.

We define a world as a pair (Δ, Σ), where Δ is a store and Σ is a set of
continuations of all the programs interacting with Δ. We denote the store as a
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triangle (	), annotated with an id of the world (and also the store itself). The
set of continuations in that world is denoted by Σ below the triangle. Fig. 1
shows some worlds.

3.2 Multi-world

The runtime structure of GCC in general consists of a collection of worlds orga-
nized in a tree structure. We call this structure a multi-world. The leaves of the
tree are worlds, and the intermediate nodes are choice nodes ⊕id, where id is a
unique identifier. The multi-world is used to represent different possible runtime
scenarios for programs to interact. Program continuations associated with one
world are executed in isolation from that of other worlds.

The operational semantics of the GCC and the programming language is
centered around the creation, evolution and deletion of a number of worlds.

5

5

’’’
6 7

id

σ

’
5

Fig. 1. Evolution of a world to a multi-world

Given a world, the execution of one program step by a continuation either
evolves the world to a new state (store + continuations), or it can split the
world into two new worlds using a choice, i.e. a choice point. This is illustrated
in Fig. 1. The upper transition is when a continuation issues an update from a
continuation σ, e.g. x := 10, which changes store Δ5 to its new state (denoted
by the gray color) and updated continuations Σ′. The lower transition shows
the splitting of one world into two, when a continuation issues a choice ⊕. This
creates two new stores, Δ6 and Δ7, each of which is a copy of the original
store Δ5, and also two sets of continuations Σ′ and Σ′′ for each branch in the
choice point. Later, we show how cm and cu help reduce the number of worlds
by “chopping” sub-trees from the multi-world. We can think of ⊕id as a logical
XOR.

4 Operational Semantics

We now describe the operational semantics of GCC together with the simple
programming language using state transitions on multi-worlds.

Let Δ be a store or a database which is a finite mapping between an infinite
set of variables and values: Δ : x 
→ v. We write Δ[x 
→ v] to denote the change
of the value of x in Δ to v.
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Let p be a program, pc be the program counter and cids be a sequence of
choice id’s where each choice id is a unique number. An instance of a program,
or a continuation σ is a triple: 〈p, pc, cids〉. Let next(p, pc) be the pc of the
next instruction, nextl(p, pc) be the next instruction after σ which corresponds
to the left branch of a choice, and nextr(p, pc) be the next instruction which
corresponds to the right branch of a choice.

Let w be a world. We recursively define a multi-world W to be:
W = w | W1 ⊕id W2

We can treat a multi-world as a tree, and a world as a leaf of the tree. Given
a multi-world W , the function worlds(W) returns all worlds (or leaves) of W .

We define δ to be a function that maps a world to a store, i.e. δ : w 
→ Δ, and
define θ to be a function that maps a world to a set of continuations currently
associated with that world, i.e. θ : w 
→ Σ, where Σ is a set of continuations.

The state of a GCC system is a triple, (W , δ, θ), where W is a multi-world,
and δ and θ are functions defined above. The system evolves by updating some
or all of these parameters.

Let view(Δ) = {(x = v) | Δ(x) = v}, i.e. the view of a store is a set of all
variable-value equations induced by the store. We further define the conjunctive
view and disjunctive view of a multi-world as follows:

CV(w) = view(δ(w))
CV(W1 ⊕id W2) = {(x = v)|(x = v) ∈ CV(W1) ∧

(x = v) ∈ CV(W2)}
DV(w) = view(δ(w))

DV(W1 ⊕id W2) = {(x = v)|(x = v) ∈ DV(W1) ∨
(x = v) ∈ DV(W2)}

The conjunctive view of a multi-world represents the variables which hold
identical values across all worlds in this multi-world; the disjunctive view gives
a set of all possible values of all the variables in these worlds.

4.1 The GCC System

A GCC system is triple (W , δ, θ). In general, the GCC system advances by the
following transition rule:

(W , δ, θ) −→ (W ′, δ′, θ′) (1)

At each time step, the system non-deterministically chooses to take either
a program step or a system step. To take a program step, the system picks a
continuation in one of the worlds and executes its current instruction by one of
the following program step rules: assignment, test, choice or commit. To take
a system step, the system evaluates certain conditions of the multi-world, and
makes changes such as pruning the multi-world tree, adding new programs or
deleting completed programs from the system by selecting a suitable system step
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rule. The way multi-worlds evolve is that program steps grows the multi-world
while system steps shrink it. We use ‘+’ below to mean set union, ‘−’ to mean
set difference where appropriate, and ‘∗’ to mean any value (wildcard).

Program Step Rules. We now define the transitions of (1) attributed to a user
program. In what follows, we shall be selecting a continuation σ = 〈p, pc, cids〉
from W , and describe its one-step execution. We write w to denote the world
associated with σ, and Δ to denote the corresponding store δ(w). We write pc′

to denote next(p, pc) except for test or choice. For a test, we write pc1 and pc2
for the next pc after the test. For a choice, we write pcl and pcr for the next pc
advancing to the left and the right branch in a choice.

We now proceed by case analysis on the construct corresponding to the current
program point p[pc]:

Assignment x := v
Δ′ = Δ[x 
→ v], δ′ = δ[w 
→ Δ′], and
θ′ = θ[w 
→ (θ(w) − {σ} + {σ′})] where σ′ = 〈p, pc′, cids〉.

Test or Guard c?
θ′ = θ[w 
→ (θ(w) − {σ} + {σ′})]
where σ′ = 〈p, pc1, cids〉 if view(δ(w)) |= c;
σ′ = 〈p, pc2, cids〉 if view(δ(w)) �|= c.

Choice ⊕
W ′ = W [w ← w′ ⊕id w′′],
id = 〈p, pc, s〉 where s is a unique number,
δ′ = δ − {w 
→ δ(w)} + {w′ 
→ δ(w)} + {w′′ 
→ δ(w)}, and θ′ = θ − {w 
→
θ(w)} + {w′ 
→ (θ(w) − {σ} + {σl})} + {w′′ 
→ (θ(w) − {σ} + {σr})}
where σl = 〈p, pcl, cids.append(id)〉 and σr = 〈p, pcr, cids.append(id)〉.

Commit cm
δ′ = δ[w 
→ (δ(w) ∪ {cmid 
→ 1})] and θ′ = θ[w 
→ θ(w) − {σ} + {σ′}]
where id = cids.last() and σ′ = 〈p, pc′, cids.droplast()〉.

Commit cu
δ′ = δ[w 
→ (δ(w) ∪ {cuid 
→ 1})] and θ′ = θ[w 
→ θ(w) − {σ} + {σ′}]
where id = cids.last() and σ′ = 〈p, pc′, cids.droplast()〉.

In an assignment step coming from a continuation of a world w, the store of that
world is updated and the continuation steps forward.

In a test step, no store is changed, except the continuation being activated
advances to a new pc. In case of a guard, that pc is not changed if the test failed
(which can be thought of as a busy loop1); in case of conditionals or while loop,
the pc changes to different values depending on the result of the test.

If a continuation σ issues a choice in world w, that world is split into a multi-
world w′ ⊕id w′′, with the store of w copied to w′ and w′′, and the σ of w′

advances to the left branch while the σ of w′′ advances to the right branch. A

1 In practice, a triggering mechanism which indexes all the blocked guards and only
fires guards which could be enabled can be used [11,12].
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new choice id is dynamically generated. We use cids.append(id) to denote that
the new id is appended to the end of the original cids sequence.

The rules for cm and cu simply updates the affected world’s store with a new
variable and value: cmid = 1 or cuid = 1 to indicate that a previously issued
choice has been committed on one of the branches. We use cids.last() to denote
that the selected id is the last one in cid and cids.droplast() denotes that the
new cids has the last element removed.

System Step Rules. We now complete the definition of (1), this time by
defining transitions attributed to the system.

Birth (W , δ, θ)
b(q)−→ (W , δ, θ′)

where q is a new program, and θ′ = θ[w 
→ θ(w) + 〈q, 0, []〉] for all w ∈
worlds(W).

Death (W , δ, θ)
d(q)−→ (W , δ, θ′)

where for all continuations 〈q, pc, ∗〉 in W , q[pc] =end, and
θ′ = θ[w 
→ (θ(w) − {〈q[pc] = end, ∗〉})] for all w ∈ worlds(W).

Pruning

(W1 ⊕id W2, δ, θ)
pruner−→ (W1, δ

′, θ′) (2)

where CV(W1) |= cmid = 1,
δ′ = δ − {w 
→ δ(w) | w ∈ worlds(W2)},
θ′ = θ − {w 
→ θ(w) | w ∈ worlds(W2)}.

(W1 ⊕id W2, δ, θ)
prunel−→ (W2, δ

′, θ′) (3)

where CV(W2) |= cmid = 1,
δ′ = δ − {w 
→ δ(w) | w ∈ worlds(W1)},
θ′ = θ − {w 
→ θ(w) | w ∈ worlds(W1)}.

(W1 ⊕id W2, δ, θ)
prunel−→ (W2, δ

′, θ′) (4)

where CV(W1) |= cuid = 1,
δ′ = δ − {w 
→ δ(w) | w ∈ worlds(W1)},
θ′ = θ − {w 
→ θ(w) | w ∈ worlds(W1)}.

(W1 ⊕id W2, δ, θ)
pruner−→ (W1, δ

′, θ′) (5)

where CV(W2) |= cuid = 1,
δ′ = δ − {w 
→ δ(w) | w ∈ worlds(W2)},
θ′ = θ − {w 
→ θ(w) | w ∈ worlds(W2)}.

The birth and death of programs formalize the launch and completion of an
agent program. The birth of a new program q, denoted by b(q), adds instances
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of this program to every world in the multi-world.2 For simplicity, we treat every
program as being unique even when they are identical. The only way programs
are copied is through the execution of choice (see section 4.1). The death of
a program q is happens when it has reached the end of the program in every
instance of its appearance in the multi-world, then all its instances are removed
from the multi-world.

There are four pruning rules, two due to cm, and two due to cu. Rules (2)
and (3) chop off the right (left) subtree rooted at ⊕id, if the conjunctive view of
the left (right) subtree has implied that cmid = 1. Symmetrically, Rules (4) and
(5) check if the left (right) subtree of ⊕id has a conjunctive view that implies
cuid = 1. In other words, if a choice identified by id has committed to its left
branch in all the worlds in the left sub-tree of a multi-world rooted at ⊕id, then
all other worlds under ⊕id in which the right branch of choice id is attempted are
discarded. If the choice has given up (commit you) left branch in all worlds of the
left sub-tree of the multi-world rooted at ⊕id, then all worlds in the left sub-tree
are discarded. Note that there can be more than one multi-worlds rooted at ⊕id,
but they are treated separately under the pruning rules.

4.2 An Example of Multi-world Transitions

Consider the following producer/consumer example.

P ::= (a := a + 1; b := b + 1; cm) ⊕
(a := a + 1; c := c + 1; cm)

C ::= (((a ≥ 1 ⇒ a := a − 1; cm) ⊕2

(b ≥ 1 ⇒ b := b − 1; cm)); cm) ⊕1

((time ≥ 10) ⇒ cm)

Fig. 2 illustrates the dynamic evolution of the multi-world with the two con-
current programs P and C. The initial store is Δ1 = {a = 0, b = 0, c = 0, time =
0}. We number the choice nodes of P and C as P1, P2, P3, C1, C2. P (i) and
C(i) denote the continuations with the details given at the bottom.

Suppose C gets to make its choices first, the result is three worlds with the
two choice nodes C1 and C2 in the multi-world. Then P starts to issue a choice
which multiplies to six different worlds. As P produces a and b in one branch
and a and c in another, before P commits in any of its branches, choice C2’s left
branch can consume a and commit. The commit adds the information cmC2 = 1
to both worlds, hence the prune step can be applied to prune off the worlds of
w8 and w9. In the P3 subtree, P commits in w10 first and deletes w11. P can also
commit in the the right branch of the P1 subtree, using a prune step to prune
off the left subtree of P1, namely w6. At this point, there are only two worlds
left, w7 and w10. Since P now has committed in all worlds (w7 and w10), it exits
from the system. Finally, the left branch of C1 commits, which kills world w10
so there is only one remaining world w7.

2 The source of new programs here is assumed to be from the external environment,
although, its also possible to enhance the programming language here to create new
agents.
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P (0): 〈P, 0, []〉 P (1): 〈P, 1, [P1]〉 P (2): 〈P, 5, [P1]〉 P (3): 〈P, 1, [P2]〉
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C(4): 〈C, 5, [C2, C1]〉 C(5): 〈C, 8, [C1]〉 C(6): 〈C, 12, []〉

Fig. 2. A worked example

5 On the Semantics of Commit

The key issue of commit is when a cm or cu is executed in some world, which other
worlds should be deleted and when to delete them. For our discussion, we reuse
one of the multi-words from Fig. 2 as Fig. 3. Fig. 3 shows that the same syntactic
choice in P can be issued multiple times in different parts of the multi-world.
These choice nodes have different id’s, as they are created in different worlds
and hence belong to different scopes. Subsequently other programs executing in
worlds w6 to w11 can also issue choices, further expanding the tree.

The coordinated commit works as follows. A commit operation not only has
to match syntactically with the choice structure it belongs to (which is identified
by the program code p and the program counter pc, but also maps itself to the
scope in which the choice was first launched into. For example, if a commit is
executed in one of the worlds under node P1 in Fig. 3, then only some of the
worlds under P1 should be deleted and not worlds under P2 or P3 in the tree.
This is accomplished by using the choice id sequence, cids, in each program
continuation. A commit always uses the id of the inner-most choice construct
that surrounds this commit operation. Since the id’s are generated dynamically
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Fig. 3. A multi-world

as choices are issued, the same choice construct will obtain different id’s in
different scopes. Thus the matching of commits with the correct choice nodes is
done automatically.

We now discuss other alternatives for the semantics of commit, and argue why
the given semantics in section 4 is selected. We will illustrate these semantics in
Fig. 4, 5 and 6. For simplicity, the continuations associated with the worlds are
omitted. Where commit has been executed to a store Δi, we write cmid under
Δi. The stores with the commits of interest are highlighted.
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Prune

7
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Fig. 4. Absolutely eager commit

Absolutely eager commit prunes in an eager fashion. If a cm whose id is id is
reached in any world, this world is committed and all other worlds within the
scope of this cm, that is, under the subtree rooted at ⊕id, are killed immediately,
leaving just one world under ⊕id. That effectively removed all the intermediate
nodes including ⊕id in that subtree (see Fig. 4).

This form of commit does not seem very useful since it allows for minimal
inter-play of choices, and the chances of achieving a useful speculation is small
since other possibilities are eliminated immediately. In addition, with this se-
mantics, cu does not make sense as cu may refer to a choice currently in many
worlds and the system does not know which world to commit to.

A “less eager” kind of commit is eager coordinated commit. For a program
r ::= r1 ⊕ r2, if cm is reached in one of the worlds where r1 is executed, then
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Fig. 5. Eager coordinated commit

all worlds associated with r2 are deleted immediately (see Fig. 5). The idea
here is that syntactically r2 is not a viable choice any more. Conversely, if cu
is reached by r2 in any world, then all worlds associated with r2 are deleted
immediately. However, in either cases, r returns only after r1 has committed in
all the remaining worlds.

This type of commit is “eager” because commit in one world kills the alterna-
tive choice in all other worlds; it is “coordinated” as the program only returns
after the choice can commit in all remaining worlds. The following example of
two programs P and C shows a drawback of this semantics,

P ::= (+a; cm) ⊕ (+b; cm)
C ::= (?a ⇒ −a; cm) ⊕ (?b ⇒ −b; cm)

Four worlds are created with these two programs. We denote the world in
which the left branch of P and left branch of C interact as PlCl and likewise
for other worlds. Assume nothing exists in the store initially, P produces a and
b in all four worlds but hasn’t committed. Now suppose C consumes a in PlCl

and commits, which kills worlds PlCr and PrCr. However, as it turns out, P now
commits in world PrCl first and kills PlCl, which renders C in a blocked state.
Had C not killed PlCr and PrCr early, both P and C may commit in world PrCr.
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P1 P2cucu

P3cu
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10 11

P3
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Fig. 6. Late coordinated commit
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A more lazy form of commit is the late coordinated commit. Here the system
only starts removing worlds when a program r ::= r1⊕r2 with a choice construct
has committed its r1 (or r2) branch in all the worlds with which the r1 (or
r2) branch continuations are associated. In other words, commits are not only
coordinated within a scope, but also across all scopes this program was associated
with. For example, in Fig. 6, worlds 7, 9 and 11 are only removed when a cu in
program P has been executed in all these worlds. Note that worlds 7, 9, 11 are
the only worlds in which the right branch of P exists.

While this semantics increases the possibility of getting a solution and de-
creases the chances of deadlock from a system point of view, it is unduly conser-
vative in when to prune the tree which may cause the multi-world to be too large.
One drawback is when one branch continuation of r cannot proceed to commit
due to blocking, no worlds due to r can be removed from the multi-world.

The coordinated commit introduced in Section 4 can be considered as a com-
promise between the eager coordinated commit and the late coordinate commit.
It does not kill the alternative choice until cm of this choice has been reached in
all worlds in the scope of the choice construct. This solves the deadlock problem
caused by eager coordinated commit, depicted in the example above. At the
same time, it does not over-delay the removal of the worlds so that the size of
the multi-world can be contained more effectively.

Finally, we remark that it is possible to have a mixed semantics for com-
mit. Though we have presented one fixed commit semantics in Section 4, it is
straightforward to extend it to several possible semantics. In a closed system,
concurrently interacting programs can be determined and controlled, hence it
makes sense for programs to specify their desired version of commit. In this pa-
per, we consider the more general setting of an open system where agents can
dynamically submit arbitrary programs. Here, having multiple commit seman-
tics makes less sense because unpredictable behavior of the system can negate
the extra program control associated with the mixed semantics. For example, a
late committed choice could be killed by an eager commit issued elsewhere.

6 Empirics

The late choice in GCC allows for more kinds of reactive interactions which
involve speculation. This extra expressive power naturally comes at a cost. When
there are choices, this means that the choices in one program are multiplied with
choices from other programs. This means that when choices do not or cannot
commit for a long time, the multi-world can grow exponentially large. More
worlds in the multi-world also mean more concurrency since there are more
continuations. Furthermore, the space for the store might also increase with more
worlds. We have developed the following implementation ideas which address the
space and computation requirements.

Reducing storage — We define a system root to be the largest multi-world in
the run-time system. Then a differential view, DFV , of a non-system-root multi-
world Wi ⊕id Wj is, DFV(Wi) = CV(Wi) − CV(Wi ⊕id Wj). And for a system
root W0, DFV(W0) = CV(W0). This optimization re-organizes the multi-world
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so that, instead of having the data at the leaves, portions of the stores can be
materialized in the internal nodes in the tree by using a differential view. In
essence, this optimization stores common data as high as possible in the tree, to
reduce storage redundancy. One can use a strategy that periodically materializes
the DFV at respective nodes. This makes pruning more efficient as the common
view can be assessed higher in the tree, without going to the leaves to compute
the conjunction. For efficient evaluation of guard conditions, we can make use
of materialized disjunctive view DV at internal nodes. DV can be used as an
indexing condition to approximate whether a change in the view might wake up
a blocked guard. However, disjunctive views are large and can be too expensive
to materialize. We instead store a common property, CP, of that view DV , such
that DV |= CP.

Reducing the number of continuations — Under some safety conditions, we can
collect continuations which are identical copies (due to other programs splitting
the worlds) from the leaves, treat them as one copy, which we call the synchro-
nous continuation and execute it at a higher node in the multi-world tree. In
other words, instead of running many copies of the same program on the leaves,
we run just one copy in a higher internal node, and thus save computation. For
example, in program

p ::= while(w > 0) do w := w − 1

if variable w is currently not speculated (i.e. has one value) and will not be up-
dated by any other programs in future, then executing p at a node higher in the
tree has the same effect as executing multiple instances of p at the leaves of the
sub-tree.

Reducing the number of worlds — We keep sub-trees generated by each in-
dependent program in a “chain” form so long as the programs don’t have data
dependency on each other. If and when a data dependency is required, the linear
tree can be expanded partially and on demand. The following property describes
an ideal case of structure sharing.

Property 1. Given a set of programs R whose data requirements are disjoint from
each other, the structure-shared GCC runtime structure is a linear ordering of
|R| subtrees, where each subtree represents the runtime structure of a respective
program.

To investigate the implementation tradeoffs in applications with speculation, we
experimented with simulations based on the producer and consumer problem.
For simplicity, there are nt types of resources being produced and consumed.
The producer programs do not involve a choice, but just produce up to 3 items
of the same type at a time. The consumer programs have one GCC choice, where
each branch attempts to consume two items of the same type provided they are
available. The consumer blocks until the items become available.

This simple setup replicates a basic model of an economy where agents can bun-
dle long transactions and speculate on different possibilities. It is similar to what
the wish list in real time transactions such as booking a holiday, i.e. buying the
appropriate combination of air tickets, hotel rooms, ground transportation, etc.
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Different choices arise due to different costs, routing possibilities, availability of the
item, etc. For example, a different flight routing might necessitate a hotel room.

In the experiment, computations are executed by clock ticks. At each clock
tick, either a producer program or a consumer program or no program is
launched. At the same tick, every world in the system advances one step by
picking one program (either producer or consumer) attached in this world and
executes an instruction.

We identify two dimensions of simulation metrics:

– the level of overlapping interest by the producers and the consumers: high
overlapping (HO) where nt = 5 and low overlapping (LO) where nt = 100.

– the relative rate of production against the consumption high production
(HP), low(LP) and balanced production (BP)

We used six datasets (combinations of the above two dimensions, i.e. HO/HP,
HO/BP, . . .) with 50 producers and consumers randomly launched to the sys-
tem with a random delay from 0 to 9 ticks between two consecutive program
submissions. Due to lack of space, we only show two of the experiments, which
are representative of the good cases where GCC does not incur much additional
cost and the bad cases where GCC does lead to more overhead. Fig. 7 and Fig.
8 shows the resulting traces of three factors, i.e. total number of worlds in the
multi-world, total number of program continuations and total number of data
items stored, over a period of 500 time steps.

We can see that the optimizations we described are successful in controlling
the size of the multi-worlds and the storage requirements. For high overlapping
cases such as Fig. 7, the data storage is consistently low, and all programs run
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to completion within 500 ticks given high and balanced production. In other
more difficult cases like LO/LP in fig. 8, some of the programs were not able
to complete due to scarcity of resources. The results demonstrate that in the
expensive cases which might lead to exponential costs, the optimizations are
effective in reducing the overheads. In the bad cases in our experiments, all
three factors actually grow sub-linearly.

Table 1 records the maximum number of tree nodes, maximum number of
program continuations and the maximum size of the data storage (in terms of
total number of (variable, value) pairs stored) in each experiment.

The variation in the numbers in Table 1 has an easy and intuitive explana-
tion due to the different nature of the datasets. The results show that balanced
production/consumption gives the smallest tree size, and smallest number of
programs. Excessive consumption and low overlapping interests result in larger
tree and more computation since termination becomes less likely. When too
many types of resources are produced, the mismatch between production and
consumption also becomes more likely. These preliminary results suggest that

Table 1. Simulation results

Max Worlds Max Cont’s Max Data Storage

HO/HP 24 17 6

HO/LP 66 45 6

HO/BP 15 10 7

LO/HP 57 39 51

LO/LP 111 75 63

LO/BP 105 70 22
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GCC with optimizations gives reasonable performance under realistic circum-
stances. They also demonstrate that even though GCC is potentially expensive,
a “pay only when you use” principle is achievable.
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Abstract. Several types of invariants should be maintained when the
architecture of a software application evolves. To specify these invariants
in a reliable way, formal methods are used. However, current approaches
suffer from two limitations. First, they support only certain types of
invariants. Second, checking and enforcing the invariants is generally
done by adding appropriate logic to the application implementation in a
manual way, which is error-prone and may lead to architectural erosion.

In this paper, we combine the Z notation and Petri nets to specify
formally architectural invariants in distributed object-oriented software
applications. Moreover, we use a generative aspect-based approach to
checking and enforcing these invariants. Thus, we bridge the gap between
the formal specification and the implementation. Our approach brings
several other benefits as the code that checks and enforces invariants is
generated automatically and well-modularized in aspects.

1 Introduction

Architectural styles describe families of architectures by laying down the compo-
nent/connector vocabulary, the topology for structuring components and connec-
tors, and constraints to be satisfied by any (re-)configuration of the architecture.

The focus of this paper is on expressing and enforcing architectural constraints
for distributed object-oriented software architectures. That is, the components
in the subject systems are objects, whereby connectors can be method calls or
events. More concretely, we target four kinds of semantic constraints:

1. Constraints on objects and object cardinality, e.g., constraints on the possible
values of a certain object attribute, or on the total number of objects of a
certain class in a system.

2. Constraints on object relationships and their cardinality, e.g., constraints on
the number of objects of a class A that may be connected to an object of a
class B.
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3. Constraints on methods that modify the software architecture.
4. Method call protocols, i.e., constraints on the order in which methods that

modify the architecture should be called.

We call constraints of the first two types architectural invariants whereas we
call constraints of the third type pre- and post-conditions of architecture recon-
figuration operations because they constrain operations that modify the software
architecture. We call constraints of the fourth type coordination constraints as
they constrain the ordering of architecture reconfiguration operations.

For illustration, consider the class of software systems supporting collabora-
tive authoring of structured documents. Typically such a system is organized
in a client/server style. Documents are located on a server internally structured
as a set of non-overlapping sections. Clients connect to the server to view and
edit these documents, at the granularity level of a section. Clients can have two
different roles: writers can modify, create, and delete sections of a document,
whereas reviewers can correct a section by adding annotations to it or by modi-
fying the section formatting (i.e., they cannot edit the text but can change text
fonts and colors).

In this application, several important architectural constraints should be de-
fined and enforced. For example, two writers should not be allowed to connect
simultaneously to the same section. Another constraint is that the number of
writers that are connected simultaneously to the same document should not ex-
ceed a predefined value. A third constraint is that a reviewer can only connect to
documents that were modified by at least one writer since the last review. Other
constraints affect the order in which re-configuration operations are executed.
For example, a writer should not be able to edit a document that was changed
by another writer before a reviewer corrects that document.

Similar architectural constraints appear also in other applications with other
architectural styles, e.g., a patient monitoring system defined according to the
publish/subscribe architectural style. It allows nurses to control their patients
remotely within a certain hospital department. In this application, a nurse can
see the patient data (e.g., blood pressure, temperature, etc.) by periodically
receiving events from the respective bed monitor. Moreover, a bed monitor can
raise an alarm to the responsible nurse if the patient state becomes abnormal.
In this application, several architectural constraints should be addressed. For
instance, a nurse should not be assigned to more than five patients, otherwise,
she will not be able to do her job appropriately, a patient should not be controlled
by more than one nurse to avoid having several nurses called by the bed monitor
when an alarm is raised, etc.

We propose an approach for expressing and enforcing architectural constraints
that combines the strengths of Aspect-Oriented Programming (AOP) [1] with
those of formal methods. On the formal methods side, we use Z [2] together with
the Z-EVES tool [3] and Petri nets [4]. At the architectural specification level,
formal methods are often used to specify such constraints and to ensure their
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consistency by proving theorems on the specified architecture. The particular use
of Z and Petri nets that we propose has two main advantages over other formal
specification methods as far as the particular needs of the kinds of architectural
constraints that we address are concerned (we refer to Sec. 6 for a more elaborate
discussion).

First, it allows us to cover all three kinds of architectural constraints in ar-
chitecture specification: invariants, pre- and post-conditions of reconfiguration
operations, and coordination constraints. Due to its set theoretic and predi-
cate logic foundations, Z is well-suited for not only expressing constraints on
the structure of individual components and on relations between objects in an
object-oriented system [5]; it can also effectively be used to specify invariants
that should hold for any dynamic re-configuration of the system. To the best of
our knowledge, the latter feature of Z has not been exploited so far for archi-
tectural specifications. One of our contributions is using Z for covering both the
invariants and the pre- and post-conditions of reconfiguration operations, which
allows us to verify that reconfiguration operations do not break the architec-
tural invariants. On the other side, Petri nets are well-suited to specify method
protocols [6].

In addition to the particular combination of formal specification techniques to
specify semantic architectural constraints on distributed object-oriented appli-
cations, this paper makes another important contribution: It presents a general
schema for automatically generating AspectJ aspects [7] that enforce the archi-
tectural constraints.

Integrating logic for checking and enforcing constraints on object relations and
coordination protocols is generally done by adding corresponding code to the
affected components [8,9]. These approaches exhibit several limitations, which
may ensue in a disconnection between the application implementation and its
formal architecture specification, leading to architectural erosion [10].

The code that checks and enforces the architectural constraints is written
manually in these approaches; besides being a tedious activity, such a manual
translation has the more severe problem that there is no guarantee that the result
actually conforms to the specification: The code that implements the constraints
may contain contradictions that did not exist in the formal specification. This is
accentuated especially by the fact that this code is not well-modularized, as it
is tangled with the code implementing each component’s core functionality and
scattered across the implementation of different components. If the constraints
change, e.g., to accommodate some changes in the requirements, all places in
code affected by the implementation of the constraint enforcement logic need to
be localized and accordingly changed, which is a tedious and error-prone process
when the code to be changed is not well-localized.

A generative approach that compiles the formal specifications of the semantic
architectural constraints into the component’s code has the potential to avoid the
risk of architectural erosion. In this paper, we propose an approach to compile
Z and Petri net specifications into AspectJ code. Aspect-oriented programming is
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gaining popularity as a programming approach that supports the modularization
of crosscutting concerns. The crosscutting nature is a feature that aspects share
with specifications of architectural invariants in the focus of this paper, which
makes them a natural choice for compiling such specifications into code. We pro-
pose generic compilation schemes from Z and Petri net specifications to AspectJ
code. This process is automatic, whereby user input is expected for mapping
high-level operation names from Z specifications to points in the implementa-
tion of the application.

Compared to other generative approaches that would compile formal specifi-
cations directly into individual component’s code, the aspect-based generation
has several advantages. The generation process is more direct and the resulting
code is more reusable as it is well-modularized in aspects. Due to aspect gen-
eration, the approach as a whole can profit from advances in aspect-oriented
language technology targeting faster aspect compilation time and runtime effi-
ciency [11,12]. Also, by being kept explicit, the crosscutting structure in which
the architectural invariants manifest themselves in code becomes subject to ad-
vanced tooling technology for aspect-oriented systems. Examples are the AspectJ
development tooling (AJDT), which makes the crosscutting structure of aspects
visible explicitly in the development environment, and aspect-oriented refactor-
ing technologies [13].

On the other side, compared to writing architectural specifications directly
as aspects [14], the combination of formal specifications and aspects has the
advantage that the consistency of the specifications can be proved for correctness
at the formal specification level, avoiding the risk of surprising aspect interactions
at the code level [15].

The remainder of this paper is organized as follows. Section 2 provides some
background information on the Z notation, Petri nets, and Aspect-Oriented Pro-
gramming. Section 3 gives a short overview of our approach. In Section 4, we
explain the formal specification of architectural invariants using Z and Petri nets.
Section 5 describes the mapping of formal specification to aspect code and the
automatic generation of aspects. Section 6 reports on related work and Section
7 concludes this paper.

2 Background

In this paper, we use Z and Petri nets for specifying software architectures and
architectural invariants and Aspect-Oriented Programming for checking and en-
forcing these invariants.

2.1 The Z Notation and Petri Nets

The Z notation [2] is a formal specification language. Z defines a mathematical
language, a schema language, and a refinement theory between abstract data
types. The mathematical language is based on the set theory and on math-
ematical logic, i.e., first-order predicate logic. The schema language allows to
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describe the state of a system and how this state can change. The refinement
theory allows to develop a system by building an abstract model from a system
design. To edit and prove Z specifications, we use Z-EVES [3], which ensures the
syntax and type checking, schema expansion, precondition calculation, and gen-
eral theorem proving.

Petri nets [4] are a graphical and mathematical tool to model and analyze
discrete systems. In Petri nets, the states of a system are modeled using places
and tokens. The events are represented using transitions between places. To
model coordination protocols with Petri nets, we use the tool P3 [16], which
supports the creation, the modeling of Petri net, and their export to XML.

2.2 Aspect-Oriented Programming

Aspect-Oriented Programming [1] is a programming paradigm, which supports
the modularization of concerns that cut across the implementation of a software
application, such as logging, persistence, and security.

AOP provides language means to separate the code that implements a cross-
cutting concern from the functional code of a software application. Using AOP,
an application consists of two parts: The base program, which implements the
core functionality, and the aspects, which implement the crosscutting concerns.
Aspects are new units of modularity, which encapsulate crosscutting concerns in
complex systems by using join points, pointcuts, and advice.

Join points are well-defined points in the execution of a program. In AspectJ
[7], which is an aspect-oriented extension to Java, join points correspond to
e.g., method calls, constructor calls, field read/write, etc. The pointcut allows
to select a set of join points, where some crosscutting functionality should be
executed.

The advice is a piece of code that implements a crosscutting functionality,
which can be associated with a pointcut. The advice is executed whenever a join
point in the set identified by the pointcut is reached. It may be executed before,
after, or instead of the join point at hand; this corresponds respectively to the
advice types before, after and around in AspectJ. With an around advice, the
aspect can integrate the further execution of the intercepted join point in the
middle of some other code using the keyword proceed .

3 The Approach in a Nutshell

Our approach presumes a three-step process to developing distributed object-
oriented applications, as schematically shown in Figure 1.

In the first step, the developer specifies formally the architecture of the appli-
cation in terms of components and relations as well as constraints that should
be satisfied when the architecture evolves.

In the second step, the developer provides the functional code of the object-
oriented application in Java. This code provides only the core functionalities of
the application and does not enforce any architectural constraints. For instance,
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the functional code of the collaborative authoring application provides methods
for opening a document or for changing the font of a certain section but it does
not include code that enforces architectural constraints such as avoiding overlaps
between sections.

In the third step, the developer defines a mapping between the formal spec-
ification of the different architecture reconfiguration operations and the imple-
mentation of the application. This mapping will be used by a generator, which
emits a set of AspectJ aspects that enforce the formally specified invariants.

The functional code should conform to the formal specification of the com-
ponents and their relations. For example, if the formal specification states that
a certain component has some attribute, then the class that implements that
component should have a field that matches that attribute. However, enforc-
ing the formal specifications pertaining to individual components is out of the
scope of this paper. Our focus is rather on the enforcement of architectural
cross-component invariants.

Fig. 1. Overview of the three-level architecture

4 Formal Specification Using Z and Petri Nets

This section presents the formal specification step using the collaborative author-
ing system shortly presented in Sec. 1 for illustration. Three kinds of specifica-
tions are defined and verified in this phase. First, the structure and the behavior
of the individual components as well as the overall architecture of the system
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is specified and validated. Second, pre- and post-conditions for reconfiguration
operations are defined and verified to ensure that the specified architectural style
is maintained as the system evolves at runtime. The Z notation is used for both
kinds of specifications so far. Finally, valid sequences of reconfiguration opera-
tions are specified using Petri nets. We shortly review the Z notation and Petri
net when needed.

4.1 Overall System Specification and Verification

Predicate logic is used to specify static and dynamic properties of the individual
components participating in the system following the component specification
template shown below. In this template, atti denotes an attribute, Spri and Dpri
denote static, respectively dynamic properties of a component.

Componenti
att1 : Type1, att2 : Type2, ...., attn : Typen

Spr1, ..., Sprn
Dpr1, ..., Dprn

As an example, consider two kinds of components in our collaborative author-
ing system: shared documents and sections. A shared document is accessible to
any client that is authorized either as a Writer or as a Reviewer. A section is
defined by the position of its first and last characters in the whole document. In
the schema below, the shared document is defined as a sequence of sections that
do not overlap, as specified by the predicate in the lower part of the specification
of a shared document.

Section
firstCharacter : N

lastCharacter : N

lastCharacter ≥ firstCharacter

SharedDoc
sections : seq Section

∀ i : N | 1 ≤ i < #sections
• (section(i + 1)).firstCharacter

= (section(i)).lastCharacter + 1

The overall system specification defines a set of components, the relationships
between them, and the architectural constraints that must be maintained when
the system evolves. In the sample System schema shown below, ci denotes a
component instance, Componenti denotes a component type, relationij denotes
a relation between the Componenti and the Componentj (as represented by the
bidirectional arrow), and Apri denotes an architectural constraint. To verify the
consistency of the system specification, it should be ensured that at least one
valid initial state exists. Using Z-EVES, one can define an InitialisationTheorem
and prove it, whereby System represents the system schema and SystemInit
corresponds to a Z schema that describes the initial system state.
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System
ci : Componenti ;...
cj : FComponentj ;...
relationij : Componenti ↔ Componentj ;...

Apr1, ...Aprn

Theorem InitialisationTheorem
∃ System • SystemInit

For illustration, the system CollaborativeAuthoringSystem is specified in the
schema below. It consists of finite sets (F) of writers and reviewers, a shared
document and relations between authorized writers/reviewers and sections of
the shared document. Conditions on the relations are preserved by verifying the
domain dom and the range ran of each relation. For illustration, also constraints
C1 and C2 are given: C1 states that a writer or a reviewer can be connected
to only one section at any point in time and C2 states that two actors (writers
or reviewers) are never connected simultaneously to the same section. These
constraints should be satisfied by any operation that changes the sets of writers
or reviewers.

CollaborativeAuthoringSystem
writers : FWriter
reviewers : F Reviewer
sharedDoc : SharedDocument
WriterSection : Writer ↔ Section
...

domWriterSection ⊆ writers
ran WriterSection ⊆ {s : Section | s ∈ ran sharedDoc.section}
∀ w : writers • #(WriterSection(| {w} |)) ≤ 1 [C1]
∀ r : reviewers; w : writers; s : Section

| s ∈ ran sharedDoc.section [C2]
• (r , s) �∈ ReviewerSection ∨ (w , s) �∈ WriterSection

........

To verify the consistency of the CollaborativeAuthoringSystem schema, we
define an initial system state, InitiCASystem, shown below. The initial state
consists of two writers w1, and w2, one reviewer r1, and a shared document sd
that consists of three sections s1, s2, s3. The proof of the consistency theorem
ensures that the specification of our collaborative authoring system is consistent
and does not contain any contradictions.

InitCASystem
CollaborativeAuthoringSystem

writers = {w1, w2}
reviewers = {r1}
sharedDoc = sd
WriterSection = {(w1, s1), (w2, s3)}
ReviewerSection = {(r1, s2)}

TheoremConsistencyCASystem
∃ CollaborativeAuthoringSystem

• InitCASystem
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4.2 Specification and Verification of Reconfiguration Operations

In this step, architectural reconfiguration operations are specified formally. Each
reconfiguration operation is specified by means of a Z operation schema, which
defines the input parameters (ci?) as well as the pre- and post-conditions. These
conditions are essential to verify that the evolution of the architecture preserves
certain invariants. Reconfiguration operations are executed only if their pre-
conditions are satisfied. In the operation schema below, PreCondi and PostCondi

denote a pre- and a post-condition of the reconfiguration operation Operationi .

Operationi

ΔSystem
ci? : Componenti ; ...

PreCondi , ..., PreCondn

PostCondi , ..., PostCondn

TheoremPreCondTheorem
∀ System ∧ c? : Componenti

| preConditions • preOperationi

After specifying the reconfiguration operations formally, these operations need
to be verified. To evaluate the impact of a reconfiguration operation on a con-
straint, we define and prove the theorem PreCondTheorem shown on the right-
hand side of the specification above. This theorem states the pre-conditions that
must initially be satisfied to guarantee that the constraints are preserved after
the execution of the operation and verify that the execution of the reconfigura-
tion operation preserves the architectural style.

Let us now illustrate the approach to specifying reconfiguration operations by
means of our collaborative authoring system. We have specified and validated
formally reconfiguration operations such as the insertion and connection of writ-
ers, reviewers, and sections. For illustration, the following schema specifies the
operation ConnectWriter . The operation schema states that when a writer w?
is connected to a section of the shared document, then it should be one of the
writers that are already present in the system and the section s? should be al-
ready created. In order to validate the connection operation of a new writer, we
use Z-EVES to prove the theorem PreConnectWriter , which ensures that the
connection of a writer conforms to the system constraints described in the sys-
tem schema CollaborativeAuthoringSystem. The theorem below states that the
connection of a writer to a section requires that no reviewer is connected to that
section.

ConnectWriter
ΔCollaborativeAuthoringSystem
w? : Writer
s? : Section

w? ∈ writers [C3]
s? ∈ sections [C4]
WriterSection ′ =

WriterSection ∪ {(w?, s?)}
......

TheoremPreConnectWriter
∀ CollaborativeAuthoringSystem;

w? : Writer ; s? : Section
| w? ∈ writers ∧ s? ∈ sections

∧ (∀ r : reviewer
• (r , s?) �∈ ReviewerSection)

...

• preConnectWriter
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4.3 Specification of Valid Protocols

In this step, Petri nets are used to define constraints on the execution order of
reconfiguration operations that are already specified in Z. Typical coordinations
in distributed object-oriented applications such as synchronization, mutual ex-
clusion, conflicts, etc., can be naturally specified with Petri nets. We model each
reconfiguration operation by a transition and the system state by a set of places
and tokens. Enabling a transition in the Petri net means that the corresponding
reconfiguration operation conforms to the constraints given the current system
state. Consequently, the transition can be executed and its target places can be
occupied by tokens.

In our collaborative authoring system, the writers can create, modify, and
delete sections. Then, the reviewers can correct these sections and add annota-
tions. To enforce the activity order described above, we define a coordination
protocol, which requires that each section must be created or modified by a
writer before it becomes accessible to reviewers for correction. In addition, af-
ter a section is corrected, the next reviewer cannot revise it before an author
modifies it.

In the initial state that is shown in Fig. 2, the transitions InsertWriter and
InsertReviewer are always enabled. Consequently, the transition ConnectWriter
will be enabled. Thus, a writer can connect to a section. After the enabling of
the transition DisconnectionWriter , the writer can be deleted but she cannot
connect because there is no token in P8. However, a reviewer can still connect
because the transition ConnectReviewer is enabled.

InsertWriterInsertReviewer

DeleteWriterDeleteReviewer

P1P2

P3P4

P5P6

P7

ConnectWriterConnectReviewer

DisConnectWriterDisConnectReviewer

.

.P8P9

Fig. 2. A Petri net example



Specifying and Enforcing Architectural Invariants 221

5 Mapping Formal Specifications to Code

This section describes how formal specifications are mapped to code. The map-
ping of the specifications pertaining to individual components and to the overall
system architecture are done manually. The focus of this paper is on mapping
cross-component specifications related to reconfiguration operations and their
valid protocols. This mapping is done by translating specifications to aspects
in the AspectJ language. In the following, we first present the structure of the
generated aspects and subsequently describe the generation process.

5.1 Aspects That Implement Cross-Component Invariants

The layer that is responsible for checking and enforcing architectural constraints
at runtime consists of a set of aspects that are generated from Z operation
schemes and corresponding Petri net transitions. There is one aspect per recon-
figuration operation, i.e., per each pair of Z operation schema and corresponding
Petri net transition. For illustration, consider again our collaborative authoring
system. Each reconfiguration operation, e.g., insert writer, connect reviewer,
delete section, etc., corresponds to a Z operation schema in the formal specifi-
cation of the architectural style and to a Petri net transition in a coordination
protocol. For each reconfiguration operation, an AspectJ aspect is automatically
generated. In other words, the aspects connect the formal level and the func-
tional level in order to ensure that formally specified invariants are maintained
when the architecture evolves.

The overall structure of these aspects is as follows. The pointcuts of the gener-
ated aspects intercept the execution of operations from the functional layer that
correspond to architecture reconfiguration operations. For example, every call
to the operation insertW in the public interface of the class Writer corresponds
to the reconfiguration operation InsertWriter.

The advice of the generated aspects first checks and enforces the coordination
protocols that are defined by Petri net transitions and then checks the constraints
specified in Z. The first check verifies whether the transition in the Petri net
is enabled based on the current system state. The second check verifies the
constraints and pre-conditions corresponding to the reconfiguration operation
that are specified within the style schema and the operation schema. If both
checks are successful, the aspect executes the reconfiguration operation, and
after that updates the state of the system. Otherwise, the aspect prohibits the
execution of the reconfiguration operation.

For illustration, consider the aspect shown in Listing 1.1, which controls the
connection of a writer to a section. This operation is specified by the Z operation
schema ConnectWriter and the Petri net transition with the same name. The
pointcut ConnectWriterToSection (line 3 and 4 in Listing 1.1) selects all calls to
any public method connectW independently of its parameters and their types.
The constructs target and args are used to bind the target, respectively the
arguments, of the method call join points that are selected by the pointcut to
the variables w: Writer and s: Section respectively.
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1 public aspect EnforceConstraintsForConnectWriter {
2

3 pointcut ConnectWriterToSection(Writer w,Section s):
4 call(public * connectW(..)) && target(w) && args(s);
5

6 void around(Writer w, Section s): ConnectWriterToSection(w,s)
7 {
8 ...
9 if (isTransitionEnabled (CurrentMarking, ConnectWriterTransistion)) { ...}

10

11 ...
12 if (isMemberOf(wInput,SystemState.writers)) { ... } //Constraint C3
13 if (isMemberOf(sInput,SystemState.sections)) { ... } //Constraint C4
14 ...
15

16 if (checkConstraintC1()) { ... }
17 if (checkConstraintC2()) { ... }
18 ...
19

20 if (allConstraints) {
21 proceed(w,s);
22 updateSystemState(w,s);
23 }
24 else { ... }
25 }
26

27 boolean checkConstraintC1() { ... } //Constraint C1
28

29 boolean checkConstraintC2() { //Constraint C2
30 boolean constraints, result0, result1, result2 = true;
31 String [] Tab0 = SystemState.Newreviewers;
32 while ((Tab0.length!=0) && result0) {
33 String r = getFirstElement(Tab0);
34 String [] Tab1 = SystemState.Newwriters;
35 }
36 while ((Tab1.length!=0) && result1) {
37 String w = getFirstElement(Tab1);
38 String [] Tab2 = SystemState.Newsections;
39 }
40 while ((Tab2.length!=0)&& result2) {
41 String s = getFirstElement(Tab2);
42 constraints = Or(isNotMemberOf(w, s,SystemState.NewWriterSection),
43 isNotMemberOf(r, s,SystemState.NewReviewerSection));
44 result2 = result2 && constraints;
45 result1 = result1 && constraints;
46 result0 = result0 && constraints;
47 }
48 return result0;
49 }
50

51 void updateSystemState(String NameW, String NameS) { ... }
52 }

Listing 1.1. Example of the AspectJ Code generated

The around advice of the aspect in Listing 1.1 controls the execution of the
reconfiguration operation ConnectWriter . First, the advice contains Java code
to ensure that the coordination protocols are respected. For example, we spec-
ified in the Petri net shown in Figure 2 that a writer cannot modify a sec-
tion unless a reviewer has corrected it. The generated advice contains a call
to the method isTransitionEnabled (line 9) to check whether the transition
ConnectWriter is enabled given the current state of the system. Next, Z con-
straints are checked. For example, the constraints C3 and C4 from the Z operation
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schema connectWriter are translated to calls to the method isMemberOf of a
Z operator package that we implemented (lines 12 and 13 in the Listing 1.1).
Quantified constraints such as the constraint C1, which ensures that a writer or
reviewer can modify only one section at a given point in time, and the constraint
C2, which disallows overlaps between sections, are translated to Java code by
using helper methods. For instance, a helper method checkConstraintC2 (lines
29–49) is generated to evaluate the constraint C2. This helper method is called
in the advice (line 17).

Moreover, the advice contains a method updateSystemState (lines 51) that
updates the system state that is stored in a generated class, which represents the
components of the system, their relationships, and the marking of the Petri net. If
all generated constraints are evaluated to true, the reconfiguration operation will
be executed (using proceed) and the system state will be updated (lines 20–24).

5.2 The Aspect Generation Workflow

There are three inputs to the aspect generator. In addition to Z and Petri net
specifications, the generation process also takes a mapping of the reconfigu-
ration operations to points during the execution of the functional code as an
input. This mapping is provided by the developer using an appropriate XML
file. For illustration, Listing 1.2 shows the mapping of the reconfiguration oper-
ation ConnectWriter , defined in the formal specification, to calls to the method
connectW (lines 5–7 in the Listing 1.2) from the functional level.

1 <Mapping Name="CollaborativeAuthoringSystem">
2 <PointCut Reference="InsertWriter">
3 InsertW(Writer w):
4 call(public * insertW(..))&& target(w); </PointCut>
5 <PointCut Reference="ConnectWriter" Component="Section">
6 ConnectWriterToSection(Writer w,Section s):
7 call(public * connectW(..)) && target(w) && args(s); </PointCut>
8 ...
9 </Mapping>

Listing 1.2. Mapping formal specification to code

To automatically translate Z specifications to aspects, the structure of the
specifications must satisfy the following properties:

1. The system must be specified by a Z schema that consists of a finite set (F)
or a sequence of component instances (seq).

2. Each component must be specified by a Z schema that defines a unique
identifier of the component and one or more constraints on it.

3. A component can be atomic or composite (composed by a set or sequence
of sub-components).

4. Each component must be connected at least to another component.
5. Connections must be specified using Z relations (↔) and the domain (dom)

and range (ran) of each relation must be specified in the system schema.
6. The reconfiguration operations must be specified using Z operation schemes.
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These properties are specified in a meta-model for Z specifications available
to the generation process as an XML Schema Definition (XSD). To verify that
the Z specification is compliant with this meta-model, we translate the structure
of the Z specification into an XML file and use DOM and SAX to verify that the
XML representation of the Z specification satisfies the XSD of the meta-model.

The code generator gathers all necessary information to generate the aspects.
It extracts the properties of the components, the relations between components,
and the architectural constraints which are specified in the system schema and in
the operation schemes. For each reconfiguration operation, which corresponds to
a Z operation schema and/or to a transition in the Petri net, the pre-conditions
are translated to around advice, which coordinate and control their execution, as
schematically shown in line 5 of Listing 1.3. The generated advice is associated
with a pointcut that is provided by the user in the XML mapping file (cf. line 2
in the Listing 1.3).

1 //extract the pointcut from the mapping file
2 public pointcut PointCutName (parameters1): set of join points
3

4 //The around advice for controlling the reconfiguration operation
5 void around(parameters1): PointCutName(parameters1) {
6

7 // check if the Petri net transition is enabled
8 if (isTransitionEnabled (CurentMarking, respectiveTransistion)) { ...}
9

10 // evaluate the constraints defined in the operation schema
11 if (ZOperators(parameters2, SystemState)) { ... }
12

13 // evaluate constraints without quantification defined in the system schema
14 if (ZOperators(parameters3, SystemState)) { ... }
15

16 // call the auxiliary method for evaluating constraints with quantification
17 ...
18 if (checkConstraintCi()) { ... }
19 ...
20

21 // verify that all constraints hold and proceed if this is the case.
22 if (allConstraints) {
23 proceed(parameters1);
24 updateSystemState(parameters4);
25 }
26 else { ... }
27 }
28

29 // helper method for evaluating constraints with quantification
30 public boolean checkConstraintC_i() { ... }
31

32 // the method for updating the system state
33 void updateSystemState(parameters4) { ... }
34 }

Listing 1.3. Template of aspect generation

The workflow of the generated around advice is as follows. The advice first
checks whether the Petri net transition for the corresponding reconfiguration
operation is enabled. For that purpose, the generated advice contains a call to
the method isTransitionEnabled (line 8 in the Listing 1.3). Next, the advice
checks whether all pre-conditions of the corresponding reconfiguration operation
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are fulfilled. The constraints specified in the operation schema (line 11) and the
constraints without quantification (line 14) specified in the system schema are
evaluated first. Next, constraints that use quantification operators are evaluated
by calling auxiliary methods generated for them (e.g., method checkConstraintCi

in Listing 1.3). If one of the generated pre-conditions is not fulfilled the operation
will not be executed (lines 22-26). Otherwise, the operation will be executed by
calling proceed (line 23).

The translation of the pre-conditions of reconfiguration operations into Java
code makes use of a Java-based package of Z that we developed. This package
contains classes representing the elements of the Z language such as operators,
mathematical objects such as sets, relations, sequences, bags, etc.

In addition to aspects, the generator emits a Java class that stores the cur-
rent state of the system in terms of components and relations between them.
Each generated aspect implements a method updateSystemState (line 33), which
updates the current state of the system, if the reconfiguration operation can be
executed. This method is called in the aspect after proceed (line 24).

6 Related Work

In this section, we report on works that address the formal specification of soft-
ware architectures as well as the generation of aspects and code from formal
specifications.

6.1 Formal Specification of Software Architecture

Architecture description languages [17] emerged as modeling notations to sup-
port architecture-based development of software applications. However, ADLs
support only the specification of architecture invariants as constraints on com-
ponents and connections. They are not suited for describing the pre- and post-
conditions of architecture reconfiguration operations as shown in [18]. In addi-
tion, most ADLs lack of formal foundation.

Formal methods were used to specify several constraints in software architec-
ture such as invariants, pre- and post-conditions, and coordination constraints
on architecture reconfiguration operations (i.e., specification of the execution or-
der of reconfiguration operations). We classify works on formal specification of
software architectures according to the used techniques into three classes: based
on logic, on graphs, and on process algebras.

Some works proposed logic-based approaches such as first-order logic [19],
Z [20], and temporal logic [21]. The first-order logic covers only the architecture
invariants and pre- and post-conditions of architecture reconfiguration opera-
tions, whereas temporal logic can express at a very high level some coordina-
tion properties and temporal constrains. In [20], Gregory et al. propose using
Z to analyze the architecture styles and the relation between them. However,
this work does suports the expression of constraints on the evolution of the ar-
chitecture. Based on the schema and mathematical language of Z, we specify
in our approach both the the invariants and the pre- and post-conditions of
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reconfiguration operations. Thus, we can verify formally that the invariants are
maintained when the architecture evolves.

Other approaches use graph-based formalisms such as graph grammars [22]
and typed multi-graphs. In [22], Le Métayer uses a graph grammar, which is
based on a mathematical model, to specify software architectures formally. This
type of grammars does not support logical properties such as reasoning about
the number of component instances and logical conditions such as absence of
a communication link between two components. Generally, constraints on the
evolution of the architecture are specified by means of graph rewriting rules
to represent the reconfiguration, or by the chemical metaphor in the case of
CHAM approach (Chemical Abstract Machine) [23]. Some other works used
process algebras, e.g., CSP [24] and the π-calculus [25] to model architectural
dynamism with mobile processes.

The approaches mentioned above do not support code generation from specifi-
cations. Moreover, they cover only one aspect in software architecture. To address
this limitation, other proposals combined more than one formal method. In the
following, we focus on work that combines Z and Petri nets.

Z and Object-Z1 were combined with different process algebras, e.g., Z/CCS
[26], Z/CSP [27], and OZ/CSP [28]. In these works, Z and Object-Z are used to
describe the invariants and process algebras to describe the evolution of archi-
tecture. μ SZ [29] combines Z with a variant of state charts for specifying the
architecture evolution and a temporal logic (temporal discrete logical of inter-
vals) for checking the safety properties and describing some duration constraints.
The previous approaches do not address the coordination aspect in the evolution
of software architectures (method protocols). Moreover, they do not propose any
formal solution to check if the architectural constraints specified in Z are pre-
served when the architecture evolves. In our approach, we can specify and prove
the pre-condition theorem by using the Z-EVES theorem prover. Thus, we can
ensure that the reconfiguration operations preserve the architectural invariants
that are specified in the system schema.

SAM [30] (Software Architecture Model) is a general software architecture
development framework based on Petri nets and temporal logic. Petri nets are
used to visualize the structure and model the coordination aspect of software
architectures while temporal logic is used to specify the required properties of
the software architecture. This work is related to ours as it uses temporal con-
straints to specify the system properties. However, Z, which is based on predicate
logic and set theory allows lower level description of architectural invariants. To
support the temporal properties in our approach, we plan to introduce a linear
temporal logic extension of Z [31].

In [32], colored Petri nets2 are combined with Past Predicate Temporal logic
to specify the structure and behavior of a system. These formalisms are used to
decide on when a system can run or when it can evolve depending on its function
and structure in the past. That is, the evaluation of the pre-conditions is based

1 Object-Z is an object-oriented extension of the formal specification language Z.
2 Colored Petri nets is a high level extension of petri nets.
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on the actions, which are saved in the system history. This approach covers
partially the three aspects does not provide any tool to specify and validate
specifications.

6.2 Code Generation from Formal Specification

The translation of formal specifications to code has been addressed in several
works. In [33], Ramkerthik and Zhang discuss the generation of Java code with
design contracts from an Object-Z Specification. This work translates the struc-
ture of Object-Z specifications to XML and then generates a Java skeleton by
processing the XML representation. However, it translates only the simple pred-
icates and the generated skeletons are not executable. Jia and al. [34] propose
an approach to synthesizing functional code from UML and Z. They translate
UML models into a Z specification, which is used to generate C++ code. This
work is related to ours, but it generates the pre-conditions code in the functional
code, which poses several modularity problems.

In more recent works, formal specifications were translated into aspect code.
In [35], Bodden proposes a linear-time logic over join points to verify, during the
program execution, the temporal properties of certain actions (e.g., a temporal
relationship between two methods calls) by alternating a finite state whose tran-
sitions are triggered through generated aspects. Unlike our approach, the work
of Bodden focuses only on temporal dependencies and does not target software
architectures and their evolution.

In [36], multi-modal scenario-based specifications using Live Sequence Chart
(LSC) are translated to Scenario Aspects that are implemented in AspectJ.
This work specifies the mandatory, possible, and negative scenarios executed
between inter-objects and enforces their execution using AspectJ aspects. This
work specifies and enforces the inter-objects coordination constraints but it is not
concerned with system constraints such as the ones expressed in our approach
using Z.

7 Conclusion

In this paper, we presented an approach to compiling formal specifications of
architectural invariants in Z and Petri nets into AspectJ code. The combina-
tion of Z and Petri nets makes our approach reliable and allows us to specify
invariants, pre- and post-conditions, and coordination constraints on architec-
ture reconfiguration operations. Nonetheless, the more important contribution
of our work is the usage of an aspect-based enforcement layer, which allows for a
modular implementation of the code that checks and enforces architectural con-
straints. The automatic generation of this code makes our approach especially
user-friendly and bridges the gap between the implementation of the application
and its formal specification.

However, our approach has some limitations, which we will address in future
work. First, as we use petri nets, we support only applications with a finite
state. To address this problem, we will extend Z with support for linear temporal
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logic. Second, the programming model introduced by our approach is relatively
complex as we expect the user to know Java, Z, and Petri nets. We believe
that the benefit make the increased programming model complexity worthwhile.
Yet, a systematic investigation of the trade-off remains for future work. Third,
the aspects resulting from generation are complex and extra code is needed to
explicitly keep track of system state. This is because of the limited power of
querying capabilities of AspectJ. More expressive pointcut languages such as
Alpha [37] support a more declarative quantification over execution history and
object heap. By using them, we hope to achieve a more direct mapping of formal
specifications to aspect code. Such pointcut languages are also less fragile with
respect to syntactic changes.
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Abstract. We introduce an object-oriented referencing abstraction to express co-
ordination between objects hosted on mobile devices interconnected by a wireless
ad hoc network. On the one hand, we notice that the most popular communica-
tion paradigms for mobile ad hoc networks, such as publish/subscribe and tuple
space architectures, promote loose coupling of collaborating participants. On the
other hand, the paradigm in which many applications are developed is object-
oriented, and traditional object referencing abstractions typically lack the ben-
eficial loose coupling properties of aforementioned paradigms. This paper pro-
poses to close the paradigmatic gap between an object-oriented language and
its distributed communication infrastructure by introducing ambient references:
loosely-coupled remote object references designed for mobile ad hoc networks.

1 Introduction

The flourishing of research fields such as pervasive and ubiquitous computing [1] has
lead to a tremendous increase in research on mobile ad hoc networks – networks com-
posed of portable, mobile devices interconnected by wireless communication media.
Such networks are often regarded as the ideal hardware infrastructure to support perva-
sive and ubiquitous computing scenarios [2]. The network’s wireless capabilities, com-
bined with the mobility of the devices, results in applications where software entities
spontaneously detect one another, engage in various collaborations, and may disappear
as swiftly as they have appeared. Example applications range from modest, already
commonplace applications like collaborative text-editors, to more futuristic scenarios
such as warehouses equipped with digital infrastructure allowing customers to interact
with products, their shopping carts, etc.

This paper focuses on distributed programming language support for mobile net-
works. In distributed programming, communication paradigms based on loose coupling
between the participants have been especially promoted in the context of mobile ad hoc
networks [3,4,5,6]. Interestingly, none of these approaches is object-oriented in nature,
while most mainstream programming languages in which applications are developed
are. One of the reasons for this paradigm mismatch is that remote object references
have not been as successful in achieving loose coupling between collaborating parties
as other paradigms, such as publish/subscribe [7] and tuple space [8] architectures.
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The contribution of this paper is the proposition of a loosely coupled object-oriented
coordination abstraction for mobile networks, named an ambient reference. This ab-
straction eliminates the paradigm mismatch between object-oriented applications and
loosely coupled distributed coordination infrastructure, because it allows object-
oriented programs to interact without leaving the paradigm, while keeping the
benefits of loose coupling promoted by established collaboration paradigms. Ambi-
ent references have been implemented in a distributed object-oriented language called
AmbientTalk, which we will briefly describe as well.

2 Motivation

Based on the fundamental characteristics of mobile hardware, we discern a number of
phenomena that set mobile networks apart from their traditional, fixed counterparts. We
show how these phenomena have motivated the choice of loosely coupled interaction
paradigms for use in mobile networks. Next, we will highlight why traditional object-
oriented distributed computing does not promote loose coupling and hence requires the
use of other communication paradigms, leading to a paradigm mismatch.

2.1 Characteristics of Mobile Networks

There are two discriminating properties of mobile networks, which clearly set them
apart from traditional, fixed computer networks: applications are deployed on mobile
devices which are connected by wireless communication links with a limited commu-
nication range. Such networks exhibit two phenomena which are rare in their fixed
counterparts, and which will be shown to be the main instigators for loosely-coupled
interaction:

Volatile Connections. Mobile devices equipped with wireless media possess only a
limited communication range, such that two communicating devices may move out
of earshot unannounced. The resulting disconnections are not always permanent:
the two devices may meet again, requiring their connection to be re-established.
Quite often, such transient disconnections should not affect an application, allow-
ing both parties to continue their collaboration where they left off. Although deal-
ing with disconnection is not a new ingredient of distributed systems, these more
frequent transient disconnections do expose applications to a much higher rate of
partial failure than that which most distributed languages or middleware have been
designed for.

Zero Infrastructure. In a mobile network, devices that offer services spontaneously
join with and disjoin from the network. As a result, in contrast to stationary net-
works where applications usually know where to find collaborating services via
URLs or similar designators, applications in mobile networks have to find their re-
quired services dynamically in the environment. Services have to be discovered on
proximate devices, possibly without the help of shared infrastructure (e.g. a wire-
less base station), requiring a peer-to-peer network topology.

Any application designed for mobile ad hoc networks will have to deal with the
above phenomena. Moreover, these phenomena are not easily hidden within a standard
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programming language or middleware because their effects pervade the entire applica-
tion. In the following section, we show how dedicated communication paradigms can
drastically ease the burden of dealing with these phenomena.

2.2 Loosely-Coupled Collaboration

In this section, we describe requirements for communication paradigms that, when ad-
hered to, significantly reduce the impact of the above phenomena on software. The first
three requirements pertain to decoupling the communicating parties along three dimen-
sions as explained in detail in [7]. For each requirement, we state why it is critical in
the context of mobile ad hoc networks.

Requirement 1 (Decoupling in Time). The communicating parties do not need to be
online at the same time.

Requirement 1 states that a sender may send a message to a recipient that is off-
line, and a recipient may receive and process a message from a sender that is offline.
This makes it possible for communicating parties to interact across volatile connec-
tions. Decoupling in time is directly inspired by the need to deal with the intermittent
disconnections inherent to mobile ad hoc networks.

Requirement 2 (Decoupling in Space). The communicating parties do not need to
know each other beforehand.

Requirement 2 states that communicating parties do not necessarily need to know
one another’s exact address or location. It implies that communicating parties can rely
on some mechanism other than precise addresses or URLs to get to know one another.
Decoupling in space is an important property in mobile ad hoc networks because they
have a minimum of shared infrastructure, making reliance on servers to mediate collab-
orations impractical.

Requirement 3 (Synchronization Decoupling). The control flow of communicating
parties is not blocked upon sending or receiving.

Requirement 3 states that a sending party can employ a form of asynchronous mes-
sage passing, such that the act of message sending becomes decoupled from the act of
message transmission. Likewise, allowing recipient parties to process messages asyn-
chronously decouples the act of message reception from the act of message processing.
Message transmission and reception require a connection between sender and receiver,
but message sending and processing can be decoupled, allowing communicating par-
ties to abstract over the fact whether the other party is online or not. This requirement is
again directly derived from the volatile connections phenomenon in mobile networks.
It allows parties to perform useful work while being disconnected.

Requirement 4 (Connection Awareness). Communicating parties must be able to
keep an up-to-date view of which participants are (dis)connected.

At first glance, requirement 4 seems to somewhat contradict the above three require-
ments, because it seems to state that a process is no longer able to abstract over the state
of the connection with communicating parties. However, this is not necessarily the case
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if the aspect of communication can be separated from the aspect of failure handling by
means of orthogonal mechanisms. Being aware of the state of the connection of a partic-
ipant is important because due to the limited infrastructure in mobile ad hoc networks,
delivery guarantees for exchanged messages are often very weak. Hence, communicat-
ing parties must sometimes take explicit action when a participant disconnects.

2.3 A Paradigm Mismatch

In object-oriented distributed computing, objects distributed across several machines
may refer to and communicate with one another by means of remote object references.
A remote object reference represents a communication channel to a particular remote
object. In its most simple form, distributed message passing is a straightforward adapta-
tion of local message passing, known as remote method invocation (RMI). Using RMI,
distributed request/response interaction is very easily expressed. Unfortunately, RMI
does not decouple objects in time, space or synchronization [7]. However, asynchron-
ous adaptations of RMI (e.g. Rover’s Queued RPC [9]) have achieved decoupling in
time and synchronisation.

Other communication paradigms have been more successful at achieving loose cou-
pling between participants. For example, in publish/subscribe communication publish-
ers asynchronously publish events on channels which leads to the asynchronous notifi-
cation of registered subscribers [7]. Quite often, an event service acts as a middle man
between publishers and subscribers, allowing them to be decoupled in space. Publishers
may publish events even if no subscribers are registered on a channel and vice versa,
making them decoupled in time. Tuple spaces, discussed in more detail in section 6.2,
achieve a similar decoupling between participants.

In practice, object-oriented programs that require loosely coupled distributed com-
munication abandon the remote reference and message passing abstractions in favour
of paradigms such as publish/subscribe and tuple spaces. This requires object-oriented
code to be adapted to the communication paradigm. For example, rather than sending
messages to remote objects, publishers publish event objects on an event channel [10]
or processes insert tuple objects into a shared space. Method invocation is replaced by
subscribing event handlers on channels or by querying a tuple space using a template
object, as in JavaSpaces [11].

These adaptations achieve better decoupling of objects, but at the price of giving up
on the advantage of remote references to easily express request/response interactions.
For example, messages sent via a remote reference have an explicit receiver, so multiple
messages sent via the same reference are processed by the same receiver. Without ad-
ditional programming, this property no longer holds when broadcasting events or pub-
lishing tuples. Also, messages invoke methods which have a return value. In contrast,
matching an event or tuple that represents a request with its corresponding response
event or tuple must be done explicitly in the code.

The contribution of this paper lies in an integration of the above requirements in an
object-oriented language, such that distributed communication can still be expressed in
terms of objects sending messages to one another. Before introducing ambient refer-
ences, we first introduce the object-oriented programming language in which they have
been developed.
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3 The AmbientTalk Language

Ambient references have been implemented as part of the AmbientTalk programming
language. AmbientTalk is an object-oriented distributed programming language specif-
ically designed for distributed programming in mobile ad hoc networks [12]. The lan-
guage has been implemented as an interpreter written on top of the Java Virtual Ma-
chine. A J2ME version exists which can be deployed on PDAs.

We will use a typical collaborative ad hoc networking application to illustrate the
language and the ambient reference abstraction. After a short description of this running
example, we describe standard, sequential programming in AmbientTalk to familiarise
the reader with the language’s syntax and semantics. Subsequently, we cover concurrent
and distributed programming.

3.1 Running Example

Consider a music player running on mobile devices such as PDAs or cellular phones.
The music player contains a library of songs. When two people running the music player
enter one another’s personal area network (delineated by e.g. the bluetooth communi-
cation range of their cellular phones), the music players exchange their music library’s
index (not necessarily the songs themselves). After the exchange, the music player can
calculate the percentage of songs both users have in common. If this percentage is high
enough, the music player can e.g. warn the user that someone with a similar taste in
music is nearby and display those songs in the other user’s library which are not in its
user’s library.

3.2 Sequential Computation

AmbientTalk is a dynamically typed object-oriented language. Computation is ex-
pressed in terms of objects sending messages to one another. The following code ex-
cerpt shows the definition and use of a simple Song object in AmbientTalk:

def Song := object: {
def artist := nil;
def title := nil;
def timesPlayed := 0;
def init(artist, title) {

self.artist := artist;
self.title := title;
self.timesPlayed := 0;

};
def play() { timesPlayed := timesPlayed + 1; /* play the song */ };

};
def s := Song.new("U2", "One");
s.play();

In this example, a prototypical song object is assigned to the variable Song. A
song object has three fields, a constructor (always called init in AmbientTalk), and a
method play to play the song. Sending new to an object creates a copy of that object,
initialised using its init method.
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3.3 Distributed Computation

AmbientTalk’s concurrency model is based on that of communicating event loops as
featured by the E programming language [13]. This concurrency model has its roots
in the actor model of computation [14] and its incarnation in stateful active objects
in languages such as ABCL/1[15]. In the model, regular objects are associated with at
most one actor (a vat in E terminology) and each actor has an associated message queue.
Every actor is associated with exactly one thread, the event loop which perpetually
takes messages from its message queue and invokes the corresponding methods on its
associated objects. Within the confines of an actor, computation happens sequentially
and objects communicate using sequential message sending, as in Java or Smalltalk.
AmbientTalk actors process incoming messages in a serial manner, to ensure that no
race conditions can occur on the internal state of their associated objects.

Asynchronous Message Passing. An object a owned by one actor can acquire a refer-
ence to an object b owned by another actor. In that case, a can only send messages to b
asynchronously. When a sends a message to b, the message is placed in the incoming
message queue of b’s actor. Only when the actor processes the message at a later point
in time is b’s method invoked.

In the example scenario, each music player is modelled as an actor. Each such music
player actor contains a music library, represented as a set of Song objects. When two
such actors discover one another in the local ad hoc network, they exchange their music
library index. Before a music player downloads the library index, it first asks for the
size of the remote library. Given that remotePlayer denotes a reference to a remote
music player (see section 4), this can be expressed as follows:

def sizeFuture := remotePlayer<-getSizeOfLibrary();

AmbientTalk borrows from the E language the syntactic distinction between sequen-
tial message sends (expressed as o.m()) and asynchronous message sends (expressed
as o<-m()). An asynchronous message send always immediately returns a future,
which is a placeholder for the actual return value. Once the return value is computed, it
“replaces” the future object; the future is then said to be resolved with the value. Futures
(also known as promises) are a frequently recurring abstraction in concurrent languages
(e.g. in ABCL [15], Argus [16], E [13] and recently also in Java).

Futures are objects which can in turn be sent asynchronous messages. Those mes-
sages are accumulated within the future as long as it is unresolved. When the future is
resolved, these messages are then forwarded to the resolved value. In the E language, it
is possible to register a block of code with a future, which is executed asynchronously
when the future becomes resolved. AmbientTalk also allows the expression of such “in-
line event handlers”, which are very useful when access to the actual return value of a
message send is required. For example, if the user must be informed of how many songs
another user is sharing, the size of the other user’s music library must be printed on the
screen. This can only happen when the sizeFuture from the previous example is
resolved to an integer value:
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when: sizeFuture becomes: { |size|
// execution of this code is postponed until the future is resolved
system.println("User is sharing ", size, " songs.");

} catch: { |exception| ... };
// code following when: is processed normally

If the asynchronously invoked method raises an exception, rather than returning a
result, the corresponding future is resolved with the exception and the catch clause
rather than the when clause of the above code is executed. This enables applications to
catch asynchronously invoked exceptions in a way similar to the well-known
try-catch abstraction of sequential languages.

Exporting Objects. In order to make some objects available to remote actors and their
objects, an actor can explicitly export objects that represent certain services. Because
remote objects do not necessarily know the name or address of the exported service
object, a service object is always exported together with a service type. A service type
is a subtype of one or more other service types. Service types are not associated with
a set of methods and are merely used to categorise which objects export what kinds of
services1.

In the music player example, each music player actor exports an interface object
that can be used by other music players to start a communication session to exchange
libraries. This object is exported with the service type MusicPlayer, as follows:

deftype MusicPlayer;

def interface := object: {
def openSession(remotePlayer) {

// return a session object (explained later)
};
def getSizeOfLibrary() { ... };

};

export: interface as: MusicPlayer;

From the moment an object is exported by its actor, it is discoverable by other actors
by means of ambient references via its service type. This is explained in detail in the
following section.

4 Ambient References

An ambient reference is a remote object reference that transparently discovers and binds
to a remote object by means of a service type. For example, to discover a proximate
music player, one creates an ambient reference initialised with the MusicPlayer
service type, as follows:

def musicPlayerFuture := ambient: MusicPlayer;

1 Service types are best compared with empty Java interface types, like the typical “marker”
interfaces used to merely tag objects. Example interfaces are java.io.Serializable
and java.lang.Cloneable.
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The expression ambient: MusicPlayer initiates a service discovery request
for a remote object exported as a MusicPlayer and immediately returns a future.
When a matching object has been discovered, the future is resolved with an ambient
reference bound to the discovered object. As usual, objects can start sending messages
to the future before it is resolved, causing the future to accumulate those messages until
a remote object has been discovered. One can regard this future as a dangling or un-
bound remote reference. When the future becomes resolved with an ambient reference,
we refer to the remote object to which the ambient reference is bound as the ambient
reference’s principal.

Figure 1 depicts the situation where an ambient reference is asked for, but where
no matching principal has yet been found. It shows two actors A and B. The wireless
communication links of their host devices are represented as dotted circles which de-
limit their communication range. Each actor hosts a number of objects (white circles).
B has exported an object using a service type symbolized as a diamond. A contains
a future (gray circle) for an ambient reference that will bind to objects whose service
type “matches” the diamond shape. Although the ambient reference does not yet exist,
conceptually the future represents a dangling remote reference. Any messages sent to
this future will be accumulated by the future until it is resolved.

A B

Fig. 1. A future for an ambient reference

Figure 2 depicts the situation where both devices move into one another’s communi-
cation range. Because a matching service object has been found, A creates an ambient
reference bound to this remote object and resolves the outstanding future with the bound
ambient reference. Any messages that were accumulated in the future are forwarded to
the ambient reference.

A B

Fig. 2. A connected ambient reference
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A B

Fig. 3. A disconnected ambient reference

When the two host devices move back out of one another’s communication range, the
ambient reference does not break. Rather, it maintains the bond with the remote service,
as depicted in figure 3. It follows that an ambient reference can be in two states: it can
either be connected to its principal or disconnected from its principal. The influence of
these states on message passing is explained in the following section.

As explained in section 3.3, the resolved value of a future can be awaited using a
when block. Because the discovery mechanism immediately returns a future for the
ambient reference, objects can take explicit action when proximate services appear in
their environment by attaching a when block to the future for the ambient reference:

def musicPlayerFuture := ambient: MusicPlayer;
when: musicPlayerFuture becomes: { |ambientReference|
system.println("discovered new music player: ", ambientReference);

};

It is important to note that the code that exports the interface object, and the
code above that creates an ambient reference is executed by all music player actors in
the network. This enables music players to engage in true peer-to-peer communication:
when a music player A and a music player B enter one another’s communication range,
A will discover B’s interface object via its ambient reference and B will discover A’s
interface object via its ambient reference. The discovery is successful because the ser-
vice type of the ambient references, MusicPlayer, matches (i.e. is a subtype of) the
corresponding service type of the exported interface object.

An ambient reference created by an actor will not bind to an object exported by that
same actor. Indeed, if the object is local to the actor, it can be passed around by means of
regular message passing without the need for a decoupled communication channel such
as an ambient reference. Hence, in the example above, the ambient reference created
by a music player will never bind to its own interface object. If multiple matching
remote objects are available when an ambient reference is created, the reference binds
to one single arbitrary matching object. Ambient references that may bind to multiple
matching objects are not considered in this paper and are left as future work.

4.1 Message Passing

Ambient references follow the rules for inter-actor message passing and operate asyn-
chronously. When a client object sends a message to an ambient reference, it does not
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wait for the message to be forwarded by the ambient reference to its principal. If the
ambient reference is connected to its principal upon message reception, it forwards the
message to the principal; if it is disconnected upon message reception, it accumulates
the message internally and forwards it whenever it becomes reconnected at a later point
in time. Hence, messages sent to ambient references are never lost, regardless of the in-
ternal state of the reference. Messages are guaranteed to be forwarded to a principal in
the same order as they were received by the ambient reference. Recall that the principal
is associated with an actor which ensures that incoming messages (sent by one or more
ambient references) are executed serially.

In the music player example, once one music player has a reference to the
interface object of another music player, it can ask the remote player to open a
library exchange session by sending it the openSessionmessage. The interface
object implements this message as follows:

def openSession(remotePlayer) {
def senderLib := Set.new(); // to store sender’s music library
object: {

def downloadSong(artist, title) {
senderLib.add(Song.new(artist, title));
"ok"; // tell sender that song was successfully received

};
def endExchange() {

// myLib and THRESHOLD are instance variables of this actor
def matchRatio := (myLib.intersect(senderLib)).size() / myLib.size();
if: (matchRatio >= THRESHOLD) then: {

system.println("Found user with similar taste in music.");
};

};
};

};

Note that the openSession method returns a new object which implements
two methods which are used by a remote music player to send song information
(downloadSong) and to signal the end of the library exchange (endExchange).
A music player sends all of its own songs one by one to this session object after it has
discovered a music player:

def musicPlayerFuture := ambient: MusicPlayer;
when: musicPlayerFuture becomes: { |ambientReference|
system.println("discovered new music player: ", ambientReference);
def session := ambientReference<-openSession(self);
def iterator := myLib.iterator(); // to iterate over own music library
def sendSongs() { // auxiliary function to send each song

if: (iterator.hasNext()) then: {
def song := iterator.next();
when: session<-downloadSong(song.artist, song.title) becomes: { |ack|

sendSongs(); // recursive call to send the rest of the songs
} catch: { |exception| /* stops exchange (see section 4.2) */ };

} else: {
session<-endExchange();

};
};
sendSongs();

};
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The session object is again a future which will be resolved with an ambient
reference that is bound to the object returned by the openSession method. The
auxiliary function sendSongs sends the music player’s songs one by one to the re-
mote session object. This serial behaviour is guaranteed, because each subsequent
downloadSong message is only sent after the previous one returned an acknowl-
edgement (the simple "ok" string returned by the downloadSong method defined
above).

4.2 Partial Failure Handling

The example application described above illustrates how the use of a loosely coupled
communication abstraction (in this case an ambient reference) allows the application
developer to abstract over transient disconnections: once the music players have es-
tablished a library exchange session, they can disconnect from and reconnect to the
network without hampering the control flow of exchanged messages. Note that the
catch: clause in the previous code excerpt is normally not triggered when the ambi-
ent reference disconnects, it is only triggered if the invoked method raised an exception.
Below, we describe how to trigger this catch: clause upon disconnection, such that it
can also be used to perform failure handling if necessary.

Although an ambient reference allows a client object to safely abstract from its in-
ternal connection state, it is often useful for an application to be informed when a con-
nection with a remote object is lost or reconnected. To this end, it is possible to install
observers on an ambient reference which are triggered when the reference becomes
disconnected or reconnected. The code below shows how a music player can notify the
user whenever a proximate music player moves in and out of communication range:

when: musicPlayerFuture becomes: { |ambientReference|
...
when: ambientReference disconnects: {

system.println("music player disconnected: ", ambientReference);
};
when: ambientReference reconnects: {

system.println("music player reconnected: ", ambientReference);
};

};

The behaviour of ambient references is designed to allow the developer to abstract
over transient network failures. However, a developer may want to perform failure han-
dling from the moment an ambient reference has been disconnected for longer than a
certain timeout period. The question then becomes how the developer can reasonably
deal with all of the messages that have accumulated in the ambient reference while it
was disconnected.

To deal with failures, ambient references support one final operation: a developer
may rebind an ambient reference to point to another principal object. This object may
be another remote object, but often it will be a local object that acts as a failure handler
for all of the messages that were accumulated by an ambient reference and for all of the
messages sent to the ambient reference from the moment it has been rebound.
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In order to adapt the music player to terminate the library exchange upon discon-
nection, the ambient reference can be rebound to a failure handler object by means of
a disconnects: observer (perhaps only after a certain timeout period). This failure
handler can then reply to every message by raising an exception. This will resolve each
message’s future with that exception, which in turn triggers the catch: clause of any
registered when blocks on that future. In the second code excerpt of the previous sec-
tion, this would trigger the catch: clause for the downloadSong message, which
enables the library exchange protocol to terminate smoothly.

5 Evaluation

Now that ambient references have been properly introduced, we can evaluate them with
respect to the requirements postulated in section 2.2.

Requirement 1. Ambient references decouple the communicating objects in time.
When a client object first requests an ambient reference, it will immediately get
a future for the reference, allowing it to continue its computation until a suitable
service object has been found. Moreover, clients are not obliged to send messages
via an ambient reference only when it is connected, because an ambient reference
properly accumulates messages while it is disconnected.

Requirement 2. Ambient references decouple the communicating objects in space by
means of service types. Objects address one another by means of the services they
describe and do not know or need to know the address of the hosting device. An
exported service object also does not necessarily know which or how many client
objects refer to it via an ambient reference. Thanks to the use of futures, a ser-
vice can easily reply to its clients without referring to them explicitly simply by
returning values from its invoked methods. These return values implicitly resolve
the futures held by clients, allowing them to process replies asynchronously.

Requirement 3. Ambient references decouple the control flow of client and service
objects. Client objects send messages asynchronously and can await results asyn-
chronously by registering blocks of code with the futures. Exported service objects
are hosted by an actor, whose incoming message queue ensures that messages can
be received even while the service object is busy processing another message.

Requirement 4. Via the registration of dedicated observers which trigger upon the dis-
connection or reconnection of a principal, an application can have an up-to-date
view of the internal state of an ambient reference without affecting other applica-
tion code that sends messages and receives replies via that ambient reference. Fail-
ure handling can be performed by rebinding the ambient reference to a dedicated
failure handler object. Any undelivered messages accumulated by the ambient ref-
erence are then forwarded to that object.

Because they adhere to the first three requirements, ambient references form a
loosely coupled communication channel between objects, without sacrificing the re-
mote object referencing abstraction. The contribution of the ambient reference abstrac-
tion lies in the combination of:
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1. An abstract type-based discovery mechanism that immediately returns a future
when a discovery request is made. The future represents a “not yet discovered”
object. This enables a client object that needs to interact with a remote object to
immediately interact with the future as if that future already is the remote object.

2. Asynchronous message passing semantics which allows one to abstract over the
state of the connection with the remote object. This is achieved by implicitly accu-
mulating messages within the remote reference itself while it is disconnected.

3. Using observers to keep track of changes in the state of the connection of the refer-
ence, such that failure handling can be performed separately from the main use of
an ambient reference as a time- and space-decoupled communication channel.

While none of these mechanisms are by themselves novel, the contribution of am-
bient references lies in the combination of service discovery and asynchronous com-
munication into one coherent language construct and its application to mobile ad hoc
networks.

6 Related Work

We categorise related work into 1) object-oriented referencing abstractions, 2) tuple
space architectures and 3) publish/subscribe architectures. For each approach, we sum-
marise their applicability to mobile networks and how they resemble or differ from
ambient references.

6.1 Object-Oriented Referencing Abstractions

M2MI. The design of ambient references has been inspired by the notion of a handle in
the many-to-many invocations (M2MI) paradigm [17]. M2MI is a paradigm for building
collaborative systems deployed on wireless proximal ad hoc networks. M2MI handles
use Java interfaces to decouple remote objects in space. M2MI handles also employ
asynchronous message passing.

Although M2MI has influenced the design of ambient references, there are some
important differences. First, M2MI handles do not decouple participants in time: if a
message is sent to an object which is not in communication range at that time, the
message is lost. Second, M2MI invocations require that asynchronous messages do
not return a value or throw an exception. This makes it more cumbersome to express
request/response interactions due to the lack of futures.

Actors. In the actor model of computation [14], actors refer to one another via mail ad-
dresses. When an actor sends a message to a recipient actor, the message is placed in a
mail queue and is guaranteed to be eventually delivered by the actor system. One can re-
gard a mail address as a “remote actor reference”. Although such a reference decouples
actors in time and in synchronisation (actors communicate strictly asynchronously), it
does not decouple them in space. A mail address represents a unique actor and does not
allow actors to discover one another by means of an abstract description.

E. The E language [13,18] is designed for writing secure peer-to-peer distributed pro-
grams in open networks. Our notion of distinguishing intra-actor communication (syn-
chronous message passing) from inter-actor communication (asynchronous message
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passing) is directly derived from E’s similar message passing semantics. E pioneered
the when construct to deal with the resolution of futures (or promises) in an entirely
non-blocking, event-driven manner.

E was designed for open distributed systems, but not specifically for mobile ad hoc
networks. This shows in a number of important differences with respect to the semantics
of remote references in AmbientTalk. First, a network disconnection in E immediately
breaks the remote reference: any message sent after the disconnection is not stored,
and the message’s promise is resolved with an exception. Hence, E’s remote references
do not decouple participants in time and are not designed to express communication
over volatile connections. E does feature a hook similar to the one introduced in Ambi-
entTalk to enable the programmer to react upon the disconnection of a remote reference.
There is no corresponding hook for reconnection in E, because once broken, a remote
reference in E remains broken.

To regain connectivity after a network failure, E features special references, known
as sturdy references, which do survive network failures. Sturdy references, however, are
created by means of an explicit address (in the form of a URL) and are meant to denote
specific objects, so they do not decouple objects in space.

Jini. The Jini architecture for network-centric computing [19,20] is a platform for
service-oriented computing built on top of Java. Jini introduces the notion of lookup
services. Services may advertise themselves by uploading a proxy to the lookup ser-
vice. Clients search the network for lookup services and may launch queries for services
they are interested in. Clients can download the advertised proxy of a remote service
and may interact with the remote service through the proxy. Java interface types are
used to describe and discover services. Our use of service types to describe to which
kinds of objects an ambient reference may bind has been inspired by this mechanism.

Jini is primarily a framework for bringing clients and services together in a net-
work with minimal administrative infrastructure. Once a client has downloaded a ser-
vice proxy, the proxy is the communication channel to the service. This proxy may be
implemented however the service sees fit. For example, it is possible to construct proxy
references which e.g. accumulate messages when the remote service is disconnected to
achieve decoupling in time. Hence, Jini’s architecture is flexible enough to accomodate
ambient references. However, to the best of our knowledge, Jini does not by default
offer any advanced remote “service” references. By default, the proxies advertised by
services communicate synchronously with their service.

6.2 Tuple Spaces

Linda and LIME. Tuple spaces as originally introduced in the coordination language
Linda [8] have received renewed interest by researchers in the field of mobile comput-
ing. Adaptations of tuple spaces for mobile computing, such as LIME [4], feature tuple
spaces local to each device which are merged into a federated transiently shared tuple
space when joining the network. In the tuple space model, processes communicate by
inserting and removing tuples from the shared tuple space, which acts like a globally
shared memory. Decoupling in time is achieved because processes can insert and retract
tuples independently. Decoupling in space is achieved because the publisher of a tuple



Object-Oriented Coordination in Mobile Ad Hoc Networks 245

does not necessarily specify, or even know, which process will consume the tuple. Syn-
chronisation decoupling is not adhered to in the original Tuple space model: although
tuple insertion is asynchronous, there exist synchronous (blocking) operations to extract
tuples from the tuple space.

As the need for total synchronization decoupling became apparent for mobile net-
works, extensions of the model such as LIME provide reactions which are callbacks
that trigger asynchronously when a matching tuple becomes available in the tuple space.
LIME adheres to requirement 4, connection awareness, by introducing a read-only,
system-maintained tuple space whose tuples represent metadata, such as the hosts that
are currently connected. Registering reactions on such tuples achieves a connection
awareness strategy similar to one using the observers introduced in section 4.2.

The main difference between LIME and ambient references lies in their employed
communication paradigm. Ambient references foster a more object-oriented program-
ming style because communication is one-to-one rather than one-to-many and happens
by means of asynchronous message sends (which capture the communication of both
request and reply in one single abstraction).

ActorSpace. The inability of mail addresses to represent unknown, undiscovered actors
have been addressed in the ActorSpace model [21]. This model is a unification of con-
cepts from both the actor model and the tuple space model of Linda. Callsen and Agha
note that, on the one hand, the actor model provides a secure model of communication
as an actor may only communicate with actors whose mail address it has been explicitly
given via message passing. On the other hand, this disallows actors to get acquainted
with other actors in a time- and space-decoupled manner.

The ActorSpace model augments the actor model with patterns, denoting an abstract
specification of a group of actors. The actor model’s send primitive, which normally
takes a receiver mail address and a message and sends the message to the correspond-
ing mail address, is changed such that send now also accepts a pattern rather than a
mail address. For example, send("MusicPlayer", "getSizeOfLibrary")
can be received by any actor whose own name matches the pattern within the con-
text of a so-called actorspace. The send primitive delivers the message to a non-
deterministically chosen matching actor. Although this behaviour is good when it does
not matter to the sender which specific actor receives the message (e.g. when the re-
ceiver is a replicated file server), it is not similar to an ambient reference in the sense
that multiple messages sent to the same pattern may be received by different actors.

6.3 Publish/Subscribe Architectures

LPS. Location-based Publish/Subscribe (LPS) [6] is a publish/subscribe architecture
designed specifically for the collaboration of mobile ad hoc applications. The main
difference between LPS and traditional publish/subscribe architectures is that event
dissemination and reception is bounded in physical space: a publisher defines a pub-
lication range and a subscriber defines a subscription range. Only when the publication
range of the publisher and the subscription range of the subscriber overlap is an event
disseminated to the subscriber.
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STEAM. Scalable Timed Events and Mobility (STEAM) is an event-based middleware
designed for supporting collaborative applications in mobile ad hoc networks [22,2].
STEAM builds upon the observation that the physically closer an event consumer is
located to an event producer, the more interested it may be in those events. It allows
events disseminated by producers to be filtered based on geographical location using
proximities. Proximities are first-class representations of a physical range, which may
be absolute or relative (i.e. a relative proximity denotes a surrounding area relative to a
mobile node).

Both LPS and STEAM are publish/subscribe middleware and have no notion of re-
mote object references. Applications are structured as a suite of event handlers and do
not use the message passing abstraction to engage in distributed communication. As
publish/subscribe architectures, they naturally decouple participants in time, space and
synchronization. It is not immediately clear how the models allow applications to per-
form failure handling when publishers or subscribers disconnect.

7 Research Status and Future Work

Ambient references have been implemented as part of the AmbientTalk programming
language2. The mobile music player used as a running example in this paper is also
available for download as an example AmbientTalk program.

We are currently investigating a family of ambient reference abstractions with slight
variations on the semantics presented here. For example, we are experimenting with
ambient references that bind to all available matching services (rather than a single
one). Such ambient references form a group communication channel which broadcast
messages to all matching objects. Other kinds of ambient references vary in their bind-
ing semantics with their principal. As explained in section 4, when the remote principal
becomes disconnected, the ambient reference remains bound to it. Sometimes it is more
appropriate to clear the binding when a disconnection occurs, such that the ambient ref-
erence can rebind to other available matching objects (e.g. in the case of a replicated
service where the identities of the replicated exported objects themselves are not im-
portant).

Another aspect of ambient references which has currently not yet been thoroughly
addressed is the garbage collection of exported objects. For the purposes of this paper,
it is assumed that exported service objects are long-lived objects which have to be unex-
ported explicitly in order to be reclaimed. Once an exported object is advertised on the
network, it can no longer be reclaimed automatically because at any point in time an am-
bient reference may bind to it. Moreover, in mobile ad hoc networks where relationships
between devices are short-lived, traditional cooperative distributed garbage collection
approaches become impractical. As illustrated by networking technology such as Jini,
the notion of a leased reference provides more robust garbage collection in the face
of both transient and permanent disconnections [19]. In future work, we would like to
integrate leasing with ambient references. Using leases, exported objects can be unex-
ported when their lease expires, while ambient references that still refer to the exported
object are responsible for renewing the lease in time.

2 The language is available at http://prog.vub.ac.be/amop/at/download
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8 Conclusions

This paper put forward ambient references as a loosely coupled object-oriented coor-
dination abstraction for mobile ad hoc networks. The conception of this abstraction is
motivated by the observation that: a) mobile networks require loosely coupled commu-
nication abstractions and b) traditional distributed object-oriented computing abstrac-
tions do not fit these requirements which c) requires object-oriented programs to leave
the object-oriented paradigm when performing distributed communication.

The contributions of this paper are: a) an analysis of the requirements for coordina-
tion abstractions for mobile ad hoc networks and b) the introduction of a coordination
abstraction for mobile ad hoc networks in the guise of a language construct which is
both object-oriented (it is an object reference carrying messages) and loosely coupled.
We have exemplified ambient references by means of a typical collaborative applica-
tion, developed in the AmbientTalk programming language.
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Abstract. Workflows have been used successfully to model collabora-
tive activities that have a well-defined structure. Workflow management
systems today can execute workflows that range from a simple sequence
of tasks to complex business processes, but have a common restriction in
that they can only function in settings where the network is stable. This
paper represents an initial investigation into the possibility of using work-
flows in a challenging new domain - that of an ad hoc mobile network
- and for a wider purpose - that of supporting arbitary collaborations
among groups of people. Moving to a mobile setting introduces many
challenges, as the mobility of the participants in a workflow imposes
constraints on the allocation of workflow tasks, coordination among par-
ticipants, and the marshaling of results. We present an algorithm that
heuristically allocates tasks to participants based on their capabilities
and mobility, and a system that uses spatiotemporal coordination to
control and manage workflow execution in a mobile environment.

1 Introduction

Workflows have proved to be useful for specifying complex activities that have a
well defined structure. The activity described by a workflow is broken up into a
set of smaller tasks with an ordering imposed among tasks to preserve the overall
stucture of the activity. A workflow can be conceptualized as a directed acyclic
graph with the nodes representing the tasks and the edges imposing the order
among them. The workflow model supports multiple candidate hosts or agents
working on a single workflow, which makes it ideally suited to describe activities
that require collaboration and coordination among multiple participants.

Currently, the workflow model is used in a wide range of applications of vary-
ing complexities, e.g., the Automator application [1] in OS X uses workflows
to describe multi-step scripts that are capable of tasks such as cropping and
resizing photos, renaming files according to a rule set, etc. Workflow Manage-
ment Systems (WfMSs) such as ActiveBPEL [2], YAWL [3], and BPWS4J [4]
manage enterprise level business processes from mortgage loan processing, insur-
ance claims processing, and payroll generation to managing shopping cart and
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check-out systems at online stores. These applications have two key aspects in
common – 1) there are multiple participants in the workflow and 2) the workflow
is executed in an environment where connectivity is not a concern.

The systems described have proved to be successful for the applications for
which they were designed, but are restrictive in that they require a wired network
of servers on which to execute. However, the workflow model does not inherently
require its participants to be attached to a wired network. In fact, the workflow
model is agnostic to the non-functional characteristics of the participants as
long as they meet the functional requirements for their assigned tasks. As such,
workflows can be used to specify broader types of collaborations.

Consider a construction site in a remote area, where workers must work to-
gether in a small area to build a bridge. Each worker is required to report
completion of his assigned tasks to facilitate scheduling and tracking. The tasks
throughout a day form a workflow which is administered by the site supervisor.
The workflow is a simple sequence of tasks which entail building the frame for
a support, delivering concrete to the work site, and then pouring the concrete.
The WfMS on the supervisor’s PDA assigns tasks based on skill, e.g., the de-
livering concrete task is assigned to a truck driver, building the framework for
the supports is assigned to an iron worker whose PDA can render CAD draw-
ings, while the task of pouring the concrete is assigned to a cement worker. The
workflow execution starts with the iron worker building the support as per the
directions from the CAD drawing on his PDA. When completed, he notifies the
driver, again using his PDA. The notification is received on the driver’s PDA.
The driver delivers the concrete, and notifies the cement worker, who then pours
the concrete.

In this example, we have used workflows to describe collaborative activities in
the physical world among groups of individuals that involve computational tasks
as well as tasks involving a physical activity by a human participant. In such
collaborations, we assume that each participant 1) carries a mobile device that
can run a small set of programs, 2) is physically mobile, and that 3) communi-
cates over a mobile ad hoc network (MANET) in the interest of flexibility. The
dynamics of the workflow execution environment create a new set of design chal-
lenges that are not faced when executing in a wired network. These challenges
can be split into two broad categories – 1) allocation, i.e., determining which
participant is responsible for a task in the workflow, becomes especially signif-
icant and must be determined a priori, and 2) coordination among the various
participants becomes significantly more complex due to the dynamic topology
of a MANET which often allows only transient connectivity among hosts.

In this paper, we describe a novel workflow management system designed for
mobile environments that is built on top of coordination technology. The contri-
butions of this paper can be summarized as follows: 1) an allocation algorithm
that is used by a leader to determine how tasks are allocated to mobile partic-
ipants that are only transiently within communication range of each other, 2)
the architecture of a workflow management system (WfMS) for mobile environ-
ments, and 3) an execution model for a WfMS that uses CAST [5], a previously
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developed model for coordination across space and time to handle the coordina-
tion among the participants in the workflow.

2 Background

A WfMS operates as follows. A workflow specification is supplied to the WfMS.
The WfMS chooses a suitable candidate to perform the first task in the workflow,
and notifies that candidate, passing any input if applicable. When the task is
completed, it notifies the WfMS, which then repeats the process for subsequent
tasks until the workflow is completed. This approach is well suited to wired net-
works since it is possible to have a centralized WfMS and candidates are always
available and accessible. In mobile networks, however, the emphasis is on a dif-
ferent set of issues. Choosing a suitable candidate comes to the fore since all
candidates may not be in range of the host executing the WfMS at all times, as
in a centralized, fully-connected setting. It is thus preferrable to allocate tasks
a priori based on qualifications and future windows of communication– inter-
vals of time when direct communciation between host pairs are possible due to
them being in communication range of each other. Notification of completion and
transmission of output also assumes a different character. Rather than routing
such communication through the WfMS, such notifications and data should be
routed directly to the candidate chosen for the next task so that the management
of the overall workflow execution is handled in a distributed fashion. In addi-
tion, issues associated with MANETs, such as transient connectivity, decoupled
computing, and lack of communication guarantees must be addressed.

Before we present our solutions to these problems, we describe the computa-
tional model used in this paper and provide an overview of CAST, a model for
spatiotemporal coordination that we exploit both for allocation purposes and
for handling low level message passing.

2.1 Computational Model

Our computational model consists of heterogenous, physically mobile comput-
ing devices which we refer to as hosts. We assume that these mobile hosts are
carried on the person of a human participant in the workflow. Hosts have sets of
capabilities, which are used to determine if they are suitable candidates for par-
ticular tasks. These capabilities may be computational in nature, i.e., a software
service executing on the mobile device, or physical, i.e., an activity performed
by the human participant associated with the device. A host also has an as-
sociated motion profile [6], which describes its location in physical space as a
function of time, and is subject to a maximum possible speed that it is capable
of achieving. This information is stored in a local knowledge base along with
similar information about other hosts.

The workflow is specified as a directed acyclic graph, with the nodes rep-
resenting tasks and the edges imposing the ordering. Each task has a set of
requirements, including a start time, an end time, a location, and a set of host
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constraints (described later). Hosts whose capabilities are a superset of a given
task’s requirements and do not violate the host or spatiotemporal constraints
are considered to be candidates for performing the task. The set of tasks from
which a task must receive inputs is called its preset since their execution must
precede its own. A task is considered ready for execution when all the tasks in its
preset have been completed. The preset of a task x is defined as the set of tasks
from which x has incoming edges. The set of tasks that immediately follow the
execution of a task are said to form that task’s postset. When the task has been
completed, all tasks in its postset are notified. The postset of a task x is defined
as the set of tasks to which x has outgoing edges. There is a single exception
to these rules. Certain edges in the workflow may be marked as optional. When
such edges appear in the preset of a task, the task at the source of that edge
need not be completed in order for the workflow to proceed.

In this paper, we assume that all participants in a workflow meet at the
beginning of the day. A group leader who has the workflow specification on
his device initiates a planning process which allocates tasks in the workflow
to participants based on their qualifications and spatiotemporal behavior. The
group then disbands and the user with the first task begins executing it. When
he completes his work, he notifies the users who have a task that appears in
the postset of the first task, at which point they begin executing. This continues
until the workflow is completed. Further details of the planning process appear
in the next section.

2.2 CAST Overview

Since our WfMS is required to operate across a MANET, we cannot rely on
standard abstractions such as sockets and streams for communication as they
are too rigid, providing connectivity only between fixed points, and allowing a
very restricted form of addressing. The use of ad hoc routing is precluded as
well since those protocols require an end-to-end connected route, which too, is
relatively inflexible. For increased flexibility, we chose to develop our WfMS on
top of CAST, a model for coordination across space and time. CAST is designed
to work in a MANET setting and provides abstractions based on a generative
communication model. We provide a brief overview of CAST here.

The key idea in CAST is to make space and time an explicit component
of the communication model. This is especially useful in MANETs since the
physical motion of the hosts imposes spatiotemporal constraints on workflow
management. In CAST every host has a knowledge base, a portion of which is a
repository of information about the motion of other hosts in the MANET. CAST
uses this knowledge to identify a series of windows of communication between
host pairs which represent intervals of time during which communication among
them is possible due to being within direct communication range. Data in CAST
is tagged with a sequence of hosts and forwarded from one host to another using
a hold and forward pattern. Each host stores the data locally until a window of
communication becomes available to the next host in the sequence of required
transmissions and then forwards it. Thus, by chaining multiple communication
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windows between host pairs, CAST forms a disconnected route between hosts
that may never be directly in contact.

These disconnected routes are used to expand the notion of reachability in a
MANET. Previously, a host was considered reachable if it was directly connected
to the source host or had an end-to-end connected multihop route built using a
MANET routing protocol such as AODV [7], DSDV [8], etc. With CAST, the
notion of reachability is extended to include hosts to which a fully connected
route is never established. This expanded notion of reachability is used to define
spatiotemporal operations that execute not only on particular hosts, but also at
specific points in physical space or over a geographic region.

It should be observed that all communication in CAST occurs when two hosts
are directly connected to each other. This communication occurs in a generative
fashion using tuples and templates. Tuples can be conceptualized as packets
that contain data. Templates are sets of constraints. When the data in a tuple
meets the constraints specified in a template, the tuple is said to match the
template and vice versa. Tuples and templates are stored in a special section of
the knowledge base on each host as is described in [5] and are transferred from
host to host using a gossiping protocol.

CAST offers three important operations– out, in, and rd. The out operation
is used to place data at a target location which may be an explicitly specified
host, a physical location, or a region of space. For clarity, we refer to these
operations as out host, out loc, and out reg respectively. When out host is
used, a tuple containing the data is placed in the knowledge base of the target
host. When out loc is used, the tuple is placed in the knowledge base of the
host that occupies that location. If no hosts are in that location, the data is held
on proximal hosts and then transferred when a host enters the target location.
An out reg operation places tuples in the knowledge base of all hosts within the
region. A monitoring scheme ensures that the data is removed from hosts that
leave the target location or region and is added when new hosts enter the target
area.

The in operation is used to remove data from a host, location, or region in
space and has the same variants as the out operation, namely in host, in loc,
and in reg. The operations take a template as a parameter. For the in host
operation, a matching tuple (if it exists) is returned from the knowledge base
of the target host. For in loc, a matching tuple is returned from the host that
occupies that location, if there is such a host, while for the in reg operation,
a matching tuple is returned from any host that is within the target region. If
multiple candidate tuples are available, one is selected non-deterministically. The
third type of operation is the rd operation, which is similar to the in operation
except that it returns a copy of the data and does not remove it.

Further details about CAST can be found in [5]. It should be noted that for
the work in this paper, we have made one modification to the CAST model,
which is that we have exposed the knowledge-base at the API level so that
applications may query it directly for planning purposes. We offer two kinds
of queries on the knowledge base– 1) is spatiotemporal constraint takes in
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two location parameters, a time parameter, and a host and returns whether a
host can travel between the two locations in the specified period of time and
2) is meeting possible takes in a start time, end time, and two host names
and returns whether the hosts are within communication range for a sufficient
interval of time that falls between the start time and the end time.

3 Allocation Algorithm

In this section, we describe the allocation algorithm for our WfMS. This algo-
rithm is different from those employed by workflow systems in wired settings in
the following ways: 1) the allocation of tasks is done a priori and in a batch
(all tasks are allocated before the workflow execution begins) as opposed to in
an on-demand fashion at runtime, 2) hosts are evaluated on the basis of their
functional capabilities as well as their spatiotemporal behavior, and 3) the al-
location process is partitioned into sub-problems with backtracking capabilities
built in. It should be noted that in mobile environments, the allocation process
assumes greater significance since a poor allocation can result in the workflow
not executing to completion due to non-functional circumstances such as situa-
tions where a host has completed a task but cannot communicate the completion
to the next host in the workflow because that host is not reachable.

Before we can begin the allocation of tasks to hosts, we must take into account
any relevant constraints that ensure that an undesirable allocation is not com-
puted. Two types of constraints are possible– host allocation constraints prevent
certain hosts from being allocated to a task, or require a particular host to be al-
located to a task, e.g., that a host must be allocated to both task X and task Y, or
that task X cannot be allocated to the same host as task Y, etc. Such constraints
form part of the workflow specification. Spatiotemporal constraints prevent allo-
cations that are in conflict in the spatiotemporal domain, e.g., a host should not
be allocated to two tasks whose start and end times overlap, a host should not be
allocated to two tasks if they are separated by time t and distance d, if the host’s
maximum speed is lower than d

t , and two different hosts should not be allocated
to two sequential tasks if the host executing the second task cannot receive the
results of the first task (either directly or via a disconnected route) before the
second task begins. The existence of spatiotemporal constraints for tasks and
hosts can be determined by calls to the is spatiotemporal constraint and
is meeting possible operations on the knowledge base associated with CAST.
Spatiotemporal constraints are especially important because they abstract the
effects of mobility and represent them as a simple constraint set to the allocation
algorithm.

Constraints are represented as 3-tuples of the form < t1, A, t2 > which indi-
cates that host A cannot be allocated to task t2 if it has been allocated to task
t1. Note that our algorithm is agnostic to the cause of the constraint which may
be host-driven or spatiotemporally driven. For simplicity, we assume constraints
to be symmetric. Once all constraints are established, we move on to build the
data structures that represent the initial state of our allocation algorithm. In
this phase, we create a table for every task in the workflow as shown in Figure 1.
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The first column in each row represents a host that has the functional capability
to perform the task and is not subject to a host constraint associated with that
task. The matching of the functional capability of a host with the requirements
of a task can be easily computed [9] if hosts’ capabilities and tasks requirements
are expressed using a uniform ontology such as OWL-S [10]. The second column
in each row is a list of tasks to which we could not allocate the host (in the first
column) if we were to allocate that host to the current task. This information
can be obtained from the constraints assembled previously– for each constraint
< t1, A, t2 >, we check the table for task t1 to see if it has a row for host A. If
it does, then we add t2 to the corresponding list in the second column.

task 1
host A 2, 3
host B 3, 4
host D 3, 4, 5

task 2
host A 1, 4
host B 3, 4
host C 4, 5

Fig. 1. Example constraint tables

The tables for each task give us two pieces of information– the list of hosts
to which that task can be allocated, and the list of future allocations made
impossible by that decision, e.g., according to the first table in Figure 1, we
can allocate task 1 to hosts A, B, or D. Allocating task 1 to host A, makes it
impossible to allocate tasks 2 or 3 to host A.

Allocation Algorithm. The tables assembled in the previous step form the
input to our core allocation algorithm, the pseudocode for which is shown in
Figure 2. The algorithm first sorts the tables in ascending order of the number
of rows in the table. Then, within each table, it sorts the rows in ascending order
of the number of elements in the list in the second column. Thus the tables are
sorted according to the number of hosts that can perform a task, and the rows
are sorted according to the number of allocation conflicts the allocation decision
causes.

The algorithm begins with the task represented by the first table. It selects the
first host in that table. If this host has no conflicts, then it can allocate that host
without any conflicts, i.e., this host can be allocated without affecting any other
allocation decisions. Hence, the host is allocated to that task and the algorithm
proceeds with the next task. If the first host (call it host A) has at least one
conflicting task, then by allocating the task to the first host in the table, we are
making some future allocations impossible. To establish whether this decision is
the correct one, the algorithm tries recursively to resolve the conflicts. For this,
it creates a stack to keep track of its allocation decisions as shown in Figure 3.
It marks host A’s row in the table, and pushes a token onto the stack reflecting
this marking. Next, it collects the list of conflicting tasks from the table. For
each conflicting task, its grays out the row with Host A in the corresponding
task’s table, and pushes onto the stack a marker that represents this change.
When it later visits these tasks, it will disregard all the rows that have been
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boolean heuristicAllocatetask(tasks, A, allocation)
for each row (G, conflicts) in A, ordered by |conflicts|

if |conflicts| = 0
allocation := allocation ∪ (A, G)
return true

myToken := new AllocationToken(A, G)
push(stack, myToken)
allocation := allocation ∪ (A, G)

for each C in conflicts
if C /∈ allocation

push(stack, new GreyRowToken(C, G))
disableRow(C.table, G)

for each C in conflicts, ordered by |conflicts|
if C /∈ allocation

if not heuristicAllocatetask(tasks, C, allocation)
do

token := pop(stack)
undo(token)

until token = myToken

push(stack, new GreyRowToken(A, G))
next row

return true
return false

map enhancedAllocate(tasks, hosts)
allocation := ∅
createConstraintTables(tasks, hosts)

for each A in tasks, ordered by |A.table|
if A /∈ allocation

heuristicAllocatetask(tasks, allocation, A)
return allocation

Fig. 2. Psuedo-code for heuristic allocation algorithm

grayed out, since they reflect decisions that would violate a constraint. This
process continues until all conflicting tasks have been recursively allocated at
which point it returns to the original list of tasks and continues allocating them
sequentially as before.

At some point, the algorithm may encounter a task with no capable hosts
left (due to them having been grayed out as an effect of previous allocation
decisions). This means that one of the earlier decisions was undesirable, and
that it must roll its state back to that decision point. It does this by popping
elements off the stack, undoing the changes that they represent, until it reaches a
change to a table that marked one of at least two remaining rows. This indicates
a place where it made a decision that may have been incorrect. It un-marks
the host chosen at this point, and grays out its row so that it doesn’t try that
host again (it also pushes a token onto the stack for the row that has just been
grayed out). Finally, the algorithm attempts to re-allocate the task to the next
un-grayed host in the table.

This algorithm has two key features. First, rather than allocating tasks in an
arbitrary order, it first allocates the tasks that are hardest to satisfy and allocates
them to hosts that will cause the fewest conflicts later. This reduces the amount
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Fig. 3. Using an allocation stack to track and roll back changes

of backtracking that the algorithm must do, since it will first consider the paths
that are least likely to cause irresolvable conflicts. Second, the algorithm recurses
through hosts’ conflict lists, effectively dividing the allocation of the workflow
into sub-problems. Due to this recursive process, it is guaranteed first to consider
the entire “conflict closure” of a task, i.e., all the tasks that recursively conflict
with it. Since by definition tasks in one closure cannot conflict with tasks in
another closure, they are allocated completely independently of each other. So,
once a closure has been fully allocated, the algorithm will never revisit any of
the tasks in it, which greatly reduces the cost of backtracking.

Note that the algorithm does not consider the actual data flow when com-
puting a well-formed allocation. This has two implications. First, the constraint
that two hosts must “meet up” before exchanging data becomes more complex
to describe when one host must receive results from multiple predecessors. This
constraint can be simplified by requiring that all tasks corresponding to nodes
that join to a common node in the graph must take place in the same physical
location. This behavior can be enforced by adding “move to a common location”
tasks to all the paths immediately before the join point. Second, our allocation
is conservative: we assume that all tasks in the workflow will be executed, even
though the workflow may split into multiple, mutually-exclusive paths. Thus,
valid allocations may exist which do not execute all tasks, and which our algo-
rithm will not find. This shortcoming can be worked around by enumerating all
possible traces through the workflow and attempting to allocate each trace indi-
vidually until one feasible allocation is found. As we show in Section 5, the cost
of running our algorithm is low enough to make this approach feasible. Neverthe-
less, in future work we may consider ways to incorporate data flow information
into our algorithm’s decisions.

Before we conclude this section, we present a brief discussion of the complexity
of this algorithm. Since our algorithm involves backtracking, in theory its worst
case complexity is exponential. However, in practical use this is rarely likely to
occur. Consider a workflow of ‘n’ tasks which must be allocated to ‘h’ hosts.
Theoretically, there are ‘h’ options for each of the ‘n’ tasks leading to a worst
case complexity of nh. However, by saying that there are ‘h’ options for each
task, we are in effect saying that all ‘h’ hosts are capable of doing any of the ‘n’
tasks. If this were true however, it would be much easier to find suitable hosts,
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and the amount of backtracking would be reduced significantly, reducing the
overall complexity. Another possibility is that the number of hosts that are able
to do a task is significantly less than ‘h’. Therefore ‘a’, the average number of
options << ‘h’ which means that na << nh. This complexity assumes a brute
force approach of trying all options in a random order as in the näıve algorithm.

In our algorithm, we do not allocate tasks in a random order. Rather we
allocate the task that has the least number of possible hosts to service it. In
the process of allocating this task, we cancel out other opportunities for hosts
to perform a task (due to conflicts) which brings down the value of ‘a’ as the
algorithm progresses, making it more efficient at the tail end. Finally, once we
allocate a task, we follow that by allocating its conflict closure. This ensures that
the backtracking we do is over a subset of the tasks rather than the entire work-
flow because a task and its conflict closure by definition do not cause conflicts
with other tasks and hence once allocated, need not be revisited as part of any
backtracking. As such our algorithm makes it possible to allocate tasks to hosts
while taking into account their mobility patterns at a lesser computational cost
than a näıve approach.

4 Execution Support

Once the planning process is completed, the execution of the workflow must
begin. In this section, we describe our system architecture, followed by details of
how workflow operations are translated into CAST operations during execution.

4.1 System Architecture

Given that our WfMS must run on relatively resource poor devices, we kept the
architecture of our system minimalist. The complete architecture of our system
can be seen in Figure 4. The bottom most layer of our architecture is the physical
network which supports TCP/IP over 802.11b/g or a similar wireless protocol.
Immediately above this layer sits the knowledge base and the CAST middleware.

The knowledge base is a repository for both functional and non-functional
information about the local host as well as other hosts in the network. Non-
functional information includes the motion profiles, and maximum speeds of
hosts, while functional information includes the capabilities of hosts as well as
data that is in transit from one host to another over a disconnected route. When
two hosts are within communication range, they synchronize their knowledge
bases by gossipping, trading non-functional information as well as actual data
(the data may be targeted towards one of these hosts or simply may be in transit
to a third party). Details of this scheme are given in [5].

CAST uses the knowledge base to compute (possibly disconnected) routes to
other hosts in the network and to physical locations. It offers a standard set of
coordination operations, namely {out, in, rd} {host, loc, reg}, which we
discussed in Section 2. When an operation is invoked, CAST places the data
or operation request in the local knowledge base (CAST uses the knowledge
base for all coordination operation management), which then transmits it to
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Fig. 4. Architecture of our WfMS

its destination via the gossiping protocol mentioned above. Any callbacks or
responses are received directly from the network layer.

Above CAST and the knowledge base sit the two components that man-
age workflow planning and execution. The planner is responsible for allocating
tasks in the workflow. To do this, it queries the knowledge base to get a list of
spatiotemporal constraints using the operations described in Section 2. These
spatiotemporal constraints are easily computed by the knowledge base as it
has access to the motion profiles and velocities of hosts. For more information
about these computations, please see Section 3 of [5]. Once the constraints are
computed, the planner uses the algorithm described in the previous section to
allocate tasks in the workflow. Once the allocation is completed, it informs the
hosts of their assignments by issuing CAST operations. It should be noted that
the planner is typically active only on the group leader’s device, whereas other
hosts have the planner available but it is not active. In future work, we intend
to use the other host planners for run-time replanning in case of errors.

The Workflow manager is the component that takes the place of the central-
ized WfMS seen in traditional wired systems, and in combination with managers
on other hosts represents a distributed WfMS. The workflow manager is respon-
sible for accepting task assignments, starting each task at the appropriate time
after making sure that all inputs are available, and disbursing the result of the
task or a notification of completion to the postset of the task. A detailed expla-
nation of the workflow manager’s operations appears in the next subsection.

Above the planner and the Workflow manager lie external applications of two
types– 1) applications that initiate a workflow execution by injecting a workflow
specification into the planner, which then allocates the workflow and hands it
over for execution, and 2) applications that represent the capabilities of the host
and are invoked by the workflow manager to complete tasks in a workflow.

4.2 CAST Support for Workflow Operations

The workflow manager and the planner support the following operations– 1)
distributing task allocations to hosts, 2) registering interest in task allocations,
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3) registering interest in results from the preset of each task, 4) performing each
assigned task, and 5) distributing the result of eac task to its postset. We now
describe how these three operations are supported by CAST.

Distributing task allocations to hosts. Once a workflow has been allocated by the
planner, individual hosts must be informed of their task assignments. This is
done via a unicast of each task (along with the list of tasks in their preset and
postset) in the workflow to the host to which it has been allocated. The data
is placed in a tuple which is then sent to the target host using the out host
operation. The tuple contains the name of the destination host in a data field so
that the hosts can identify the tuples that are intended for them.

Registering interest in plan allocations. While the distribution of the allocated
plan ensures that the data is available to all hosts, the workflow manager on
each host needs to register an interest in such data with CAST so that when the
data becomes available, CAST propagates it to the workflow manager. This is
done using the rd reg operation over the physical region where the tasks in the
workflow are being performed. The template passed to this operation specifies
the name of the local host and the rules that will match the plan allocation tuples.
Since the entire region is specified, the existence of any allocated workflow tuples
in the region with the local host’s name in a data field will generate a match
and return the task assignments for that host.

Registering interest in inputs from the preset. Once the hosts know their task
assignments, they must wait on the inputs to their task to be available before
they can begin execution. Much like registering interest in the allocation, hosts
must register interest in inputs to their allocated task. For every input to their
task, a host issues an in host operation targeted to the local host (as described
below, all tuples are sent to the recipient host, and the recipients only need to
recover it from the local knowledge base). The template contains the name of
the source task and a wildcard for the result it generates. This ensures that it
only receives results from the tasks in which it is interested.

Performing the assigned task. Once the inputs have been received, the task can
be performed in two ways. If the task involves executing a piece of software,
it is invoked automatically by the workflow manager and once the process has
finished, the result is propagated to the postset automatically. If the task involves
some physical action by the user, the workflow manager displays an alert on the
device with the details of the task to be performed. Once the user has completed
the task, he can input a notice of its completion and any relevant results into the
device. This input is then propagated to the postset by the workflow manager.

Propagating results to the postset. Once the task has been completed, hosts must
propagate the results to the postset of the task. For this, it uses an out loc
operation with the location being the location of the task in the postset. The
data sent is the name of the originating task (i.e., the task sending the data)
and the actual results from the task. The out loc operation places the tuple in
the knowledge base of a host that occupies the target location. This is repeated
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for all tasks in the postset. As described above, these tuples are retrieved by
downstream hosts and the workflow execution continues until the last task is
finished. Here it should be observed that CAST’s spatiotemporal addressing
scheme is especially beneficial to our WfMS. By propagating results by location,
individual hosts do not need to know the specific hosts to which other tasks
are allocated, i.e., each host is allocation agnostic. Additionally, this scheme can
be extended easily to accomodate re-planning at runtime since tasks can be
reassigned to alternate hosts without affecting the other task allocations.

4.3 Discussion

The key features of our architecture are its simplicity and the decoupled man-
ner in which the workflow execution can proceed. Once the allocation has been
completed, hosts are responsible only for completing the tasks that they have
been assigned to perform and do not need to be concerned with how the rest of
the workflow is allocated. The use of CAST ensures that results can be propa-
gated effectively without requiring an explicit host address and without having
to deal with MANET communication issues at the WfMS level. The decoupled
style provides a basic level of flexiblity that allows us to execute workflows on
well-behaved hosts. In reality, hosts may sometimes fail, or not move according
to their advertised motion profiles, which may cause errors during the execu-
tion of workflows. To handle such errors, sections of the workflow need to be
replanned. Replanning is a large area of research which we cannot cover here
due space constraints. However, some schemes for error handling are described
in [11].

5 Evaluation of Allocation Performance

We evaluated our allocation algorithm by designing a simulator written in Java.
We generated a series of random plans and measured the time taken to find
an allocation. For comparison, we implemented a näıve algorithm that allocates
tasks in a random order while our algorithm employs the heuristic of allocating
the tasks with the most constraints first.

Randomly generating a set of realistic plans is difficult, mainly because the
“realism” of plans is hard to quantify. Instead, our random plan generator gen-
erates a diverse range of plans based on several parameters:

– r, the number of requirements that actions may draw from
– a, the number of actions in the plan
– g, the number of agents in the system
– pr, the probability that an action has a specific requirement
– pc, the probability that an agent has a specific capability
– po, the probability of an agent having a constraint between actions

By varying these parameters, we can determine the effect that certain proper-
ties of plans have on allocation performance. For the sake of simplicity, we do not
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subdivide spatiotemporal constraints from agent constraints. Rather, we gener-
ate a set of constraint tuples directly, without first generating a set of causes for
those conflicts.

We performed 50 allocations of fully random plans using a wide range of
values for these parameters, and recorded the time taken for each version of
the algorithm either to find an allocation or to determine that the plan was
impossible to allocate. For comparison, we repeated this procedure with 50 more
random plans that were first filtered to ensure that an allocation existed. Since
the decision space that the näıve algorithm traverses quickly becomes intractable
as the number of actions and agents increases, we enforced an upper-bound of
30 seconds to find an allocation. In the interest of space, we will not present
here the results of all combinations of parameters. However, we will note that
the parameters that had the greatest effect on algorithm performance were the
number of actions in the graph, the ratio of actions to agents, and the probability
of conflicts. Figures 5 and 6 show the effect of varying the first two of these
parameters with po = 0.1, r = 8, pr = 0.1, and pc = 0.1; Figures 7 and 8 show
the effect of repeating these experiments with po = 0.3 and the other parameters
unchanged. We also note that our algorithm required no more than 10 ms to
allocate any plan of up to 24 actions, whereas the näıve algorithm frequently
required more than 30 seconds to allocate the same plans.

The algorithm shows a significant performance improvement over näıve ap-
proaches because in the event of a wrong decision, our heuristic algorithm
only has to explore the relatively small decision space of that sub-plan before



Coordinating Workflow Allocation and Execution in Mobile Environments 263

Only allocatable plans

0.01

0.1

1

10

100

1000

10000

# of agents

M
e

a
n

ti
m

e
to

p
e

rf
o

rm
a

ll
o

ca
ti

o
n

(m
s)

Naïve (a/g = 1/2) Enhanced (a/g = 1/2)

Naïve (a/g = 3/4) Enhanced (a/g = 3/4)

Naïve (a/g = 1) Enhanced (a/g = 1)

Naïve (a/g = 3/2) Enhanced (a/g = 3/2)

Naïve (a/g = 2) Enhanced (a/g = 2)

4 6 8 10 12

Fig. 6. Algorithm performance when po = 0.1, r = 8, pr = 0.1, pc = 0.1 for allocatable
plans only

revisiting the incorrect decision. Furthermore, our algorithm does not need to
traverse the entire decision space before it can conclude that a plan is not
allocatable.

6 Related Work

Workflows are a powerful model for describing collaborative tasks which tra-
ditionally have been popular in business contexts. Owing to this popularity, a
workflow commonly has been defined as the automation and management of a
business process where a business process is the sequence of tasks which must
be done to achieve a certain business goal [12]. While a workflow defines how
individuals collaborate by describing the ordered series of tasks that must be
performed, the WfMS is the software system that supports the execution of the
workflow.

Workflow Management Systems have evolved from isolated legacy systems de-
signed to automate processes for individual businesses, to systems that support
workflows in a broader scope. In particular, the Web services community, fu-
eled by the e-commerce revolution, has used the concept of a workflow as a tool
for composing existing Web service infrastructure into orchestrated or chore-
ographed distributed applications. Several standardized workflow specification
languages such as WS-CDL [13], Wf-XML [14], and BPEL [15] have surfaced
to allow tasks to be defined in terms of Web service descriptions. Commercial
[16] and open source [2] workflow management engines match Web services to
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tasks and execute the workflow. While these WfMSs allow tasks to be executed
across geographic and organizational domains, Web services depend on reliable
connections and are not designed with mobility in mind.

Recently some systems have been developed to address workflows in mobile
settings explicitly. A series of systems such as Exotica/FMDC [17], DOORS [18]
and ToxicFarm [19], adapt workflow models for mobility by supporting workflows
in the face of network disconnections. Clients in these systems hoard the needed
data from a centralized server before they disconnect from the network. Clients
may then continue to perform their task(s) while disconnected and the server
merges any changes upon reconnection. These systems, therefore, rely on some
fixed network infrastructure and assume disconnections are temporary. They
also do not exploit the potential for collaboration among clients which are not
connected to a central server but which may communicate directly with each
other. Another approach to workflows in mobile settings has been through the use
of mobile agent technology. The Agent-based Workflow Architecture (AWA) [20]
consists of mobile Task Agents which can migrate to mobile devices to execute
workflow tasks. The task execution may occur while the device is disconnected
provided the Task Agent eventually has the opportunity to migrate back to a
Workflow Agent which oversees the execution of the workflow. This agent-based
approach is more flexible and appropriate for dynamic settings, but its single
point of failure (the Workflow Agent) makes it undesirable for MANETs.
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One emerging system is WORKPAD [21], which supports workflows in
MANETs and is designed specifically for emergency/disaster scenarios. WORK-
PAD operates by centrally coordinating the activities of small teams which
perform various disaster recovery activities. These teams operate in separate
MANETS but the system assumes that hosts in each MANET operate in tight
proximity with a central coordinating host that predicts disconnections and re-
allocates tasks to other agents or replans the workflow when disconnections
occur. Additionally, WORKPAD assumes that the coordinator in each MANET
maintains a reliable satellite connection to a central system of P2P servers. Our
approach is to build a WfMS for a MANET setting without requiring any of the
nodes to have an external connection. As demonstrated in this paper, we have
exploited coordination technology to realize this goal.

7 Conclusion

Designing a WfMS targeted to mobile ad hoc networks (MANETs) poses a set of
challenges that are very different from those faced when developing such a sys-
tem for wired networks. There is increased emphasis on the allocation process,
and the model of execution must support the dynamic nature of mobile plat-
forms. In this paper, we described an allocation algorithm which uses a heuristic
for efficient allocation of tasks and showed how its average case performance
is significantly better than a naive allocation. For execution of the workflow,
we have adopted a coordination approach for handling the communication and
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coordination between the participants in the workflow. We exploited the pow-
erful spatiotemporal operations offered by CAST to simplify the design of our
WfMS. The result is a lightweight, distributed WfMS that can address many of
the demands of mobile environments.
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Abstract. Coordination languages for ad hoc networks with a fluid
topology do not offer adequate support to detect and deal with device
disconnection. Such a disconnection is particularly relevant if the device
provided context information rather than emitting messages, as such
context information then becomes invalid. This paper proposes the Fact
Space Model which establishes a logic coordination language on top of
Lime’s federated tuple space. In the model, the federated space offers
applications a consistent view of their environment over which they can
reason using logic rules. These rules encode which conclusions may be
drawn from the presence of particular facts, and are similarly used to en-
sure the consistency of these conclusions when devices go out of range.
By allowing applications to add application-specific hooks to these rules,
the application programmer is offered a general-purpose mechanism to
respond to the discovery and disconnection of devices.

1 Introduction

The increasing popularity of cellular phones, PDAs and numerous other mobile
devices heralds the realisation of the ubiquitous computing and ambient intelli-
gence research visions [1,2]. A crucial aspect of the various scenarios put forward
as part of these visions is that mobile users can reap the benefits of being sur-
rounded by a cloud of small, interconnected computing devices. These benefits
come in two distinct flavours: providing either additional or smarter behaviour.
An example of the former is offering printing facilities to users in the proximity
of a printer. A classical example of providing smarter behaviour is signalling a
user’s cellular phone that it is in a meeting room, allowing it to forward incoming
calls to the user’s voice mail.

As managing the interplay of services in an ad hoc network with a fluid topol-
ogy and transient connectivity can become quite complex, this task is typically
entrusted to a dedicated coordination language. A well-established coordination
language for mobile ad hoc networks is provided by the Lime [3] middleware.
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Lime allows publishing information that steers the coordination of a set of ap-
plications in a tuple space that is transiently shared between all devices that
are currently in range. Devices can respond to the appearance of such tuples by
registering reactions. Unfortunately, Lime keeps no record of the causal link be-
tween a tuple and the reactions the tuple provoked. For the examples described
above, this implies that there is no automatic mechanism to remove the printing
facilities nor to signal that the cellular phone should stop forwarding calls when
the user is no longer in the proximity of the printer respectively when he is no
longer in the meeting room.

This paper proposes the Fact Space Model which conceives the federated
space as a distributed knowledge base. The transiently shared facts describe the
current environment of a device and may be used to customize the behaviour
of applications accordingly. These customizations are achieved using a logic co-
ordination language whose rules record the causal link between (a set of) facts
and the conclusions that may be drawn from them. As facts are retracted when
the device that published them goes out of earshot, the strict enforcing of these
causal links – invalidating conclusions when the supporting facts are retracted –
is the basis for the fine-grained support to deal with the effects of disconnection
offered by the Fact Space Model.

The remainder of the paper is organised as follows: the next section introduces
the relevant elements of the Fact Space Model in more detail. Subsequently,
section 3 describes Crime (Consistent Reasoning in a Mobile Environment), a
prototypical implementation of the Fact Space Model in which we have con-
ducted our experiments. A selection of these experiments is then presented in
section 4. Finally, we provide an overview of related work and present our con-
clusions.

2 The Fact Space Model

The Fact Space Model is a coordination model offering applications deployed
on a mobile ad hoc network a consistent view on their environment. Accord-
ing to this view of their environment, the application may offer additional or
adapted functionality to its user. An application’s view of its environment con-
sists of facts published in a federated fact space. Concretely every application
can locally publish facts and transparently shares the facts of all nearby devices
as long as they remain within communication range. Applications may react to
the appearance of facts, using rules specified in a logic coordination language.
These rules map (a combination of) facts onto a conclusion, which may involve
adding new facts to the fact space or triggering application-specific actions. The
Fact Space Model allows applications to intercept the retraction of these actions,
at which point a compensating action will be performed. Given that facts are
retracted automatically when devices disconnect, this mechanism provides fine-
grained control over the effects of disconnection. The remainder of this section
will explain both the federated fact space and the logic coordination language
in more detail.
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2.1 Federated Fact Spaces

Applications in the Fact Space Model contribute to the shared view of the en-
vironment by publishing facts. Such facts can uniformly represent various types
of information ranging from context information over service descriptions up to
tasks to be performed. Ensuring these facts are transparently distributed is done
using a federated space, as was originally proposed in Lime [3]. With regards
to the distribution architecture, the only difference with Lime is that the fed-
erated space represents a knowledge base containing facts. Consequently, both
the assertion and the retraction of facts are meaningful events which may have
repercussions on how the applications behave.

Applications are equipped with at least two fact spaces, a private one to store
application-specific facts and one or more interface fact spaces for facts that
need to be disseminated. In the cell-phone example, the private fact space could
contain user preferences detailing which behaviour to adopt when in a particular
(kind of) room. The location of a device is typically derived by the proximity
to a predefined device, which published location information in an interface fact
space, as illustrated by figure 1. The federated fact space consists of all host
level fact spaces for devices which are currently in range. The aggregation of all
interface fact spaces on a single host allows reusing context information that was
previously computed by another application (e.g. a printer is available at a given
ip-address) as well as coordination within the boundaries of a single device.

The Fact Space Model handles the discovery of devices in much the same way
as Lime; whenever a host discovers the presence of a new device, it will engage
the fact space of that device. This implies that all facts in the fact space of
that device are atomically and transparently asserted in the host’s fact space.
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Fig. 1. A Federated Fact Space
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At this point each application may adapt to its new environment using the logic
coordination language described in the next section. When a device goes out of
earshot, its fact space is disengaged implying that the facts published by that
device are retracted from the host’s fact space. The Fact Space Model offers
applications provisions to respond to such disconnection, as will be explained in
the next section.

2.2 Logic Coordination Language

The federated fact space described in the previous section provides each ap-
plication with a consistent view of their environment. Applications can react to
changes in their environment using rules in the logic coordination language of the
Fact Space Model. A rule could specify for instance that upon detecting a printer
in the environment, it should be added to the list of available printers. Figure 2
illustrates how such a rule could be written in the Fact Space Model. The rule
can be read as follows: the application-specific action addToPrinterList should
be performed (with a given set of arguments) if and only if the public federated
fact space contains a printer fact (with the same arguments) whose dpi is at
least 300.

:addToPrinterList(?name, ?ip) :-
public -> printer(?name, ?dpi, ?ip),
?dpi >= 300.

Fig. 2. Rule to add printer functionality to an application

For consistency, the rule in figure 2 uses the syntax of Crime, our implementa-
tion of the Fact Space Model. As can be seen from the example, logic variables in
the rules are prefixed with a question mark. Furthermore, a colon prefix is used
to differentiate between application specific actions and logic facts. The former
denote implicit method invocations on the Action subclasses described below.
Finally, facts can be quantified to denote the fact space in which they should be
found or asserted.

The main difference between the rule specified above and a similar reaction in
Lime, is that the former implicitly provides a hook to respond to the disappear-
ance of the fact. This is achieved by enforcing that any custom actions inherit
from a common abstract class Action. Subclassing from this class implies that
application developers need to implement an activate method which describes
how to respond when the action is derived, as well as a deactivate method
which describes a compensating action to be performed when the action is re-
tracted as a response to changes in the environment. Note that compensating
actions are not required to restore the application’s state prior to the execution
of the activate method.

Figure 3 exemplifies how the Fact Space Model can be used to switch the
profile of a cellular phone depending on its location. The example shows a set
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room(meetingRoom, silent).
room(office, general).

:switch(?profile), profile(?profile) :-
public -> location(myID, ?room),
room(?room, ?profile).

:switch(default) :- not profile(?p).

Fig. 3. Facts and rules to change the profile of a cellular phone

of private room facts detailing the user’s preferred profile for a particular room.
Furthermore, it contains a rule which triggers the switch application-specific
action as well as adding a private profile fact, upon detecting that the cellular
phone is located in a particular room for which the user has configured a preferred
profile. Finally, a rule is provided to switch to the default profile when no
explicit profile is prescribed1.

3 Crime : Implementing the Fact Space Model

Crime (Consistent Reasoning in a Mobile Environment) is an experimental im-
plementation in which we have explored the advantages of the Fact Space Model
in building context-aware software. This section highlights some of the key points
of the implementation before moving on to the examples presented in the next
section.

3.1 Federated Fact Spaces

Crime’s implementation of the federated fact space is achieved by building on
top of Lime, which is possible due to the fact that the underlying distribution
architecture of both systems are identical. This means that the interface fact
spaces of an application are in fact wrappers around interface tuple spaces in
Lime. Whenever a fact is added to an interface tuple space – either directly by
the application or through derivation – this corresponds to adding the fact to the
interface tuple space using the out operation. Similarly, the atomic engagement
and disengagement of fact spaces is transparently handled by the underlying
Lime implementation.

Achieving correct behaviour requires that the reasoning engine be informed
of the appearance and disappearance of facts which are relevant to its rule base.
This is achieved by installing once-per-tuple reactions whenever compiling a rule
that depends on public facts. These reactions will trigger the reasoning engine
and inform it that new facts have become available. The disappearance of hosts
is observed in the system tuple space of Lime, which posts a host gone tuple
1 The observant reader may notice that this rule is not strictly necessary as similar

behaviour could be achieved using the compensating action of switch.
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upon such an event. The reasoning engine is notified of this event (by means of
a reaction) and will subsequently handle the disconnection as described in the
next section.

3.2 Logic Coordination Language

In correspondence with the event-driven nature of the systems Crime caters for,
it uses a forward-chaining inference engine to trigger rules when fact are asserted
to and retracted from the federated fact spaces. The major benefit of forward-
chaining is that rather than answering queries, all valid conclusions from a given
set of facts are automatically derived. This implies that applications never have
to query their context explicitly, instead they are automatically notified of all
relevant changes in their environment.

Crime optimizes the derivation of valid conclusions for all available fact using
the rete algorithm [4], which we briefly explain below. The gist of the rete

algorithm is to combine the actual derivation of conclusions with an optimized
caching of intermediate results in a so-called rete network. This caching strat-
egy minimizes the set of rules to be re-evaluated whenever new facts are asserted.
Dealing with the frequent retraction of facts – caused by devices which routinely
go out of earshot – requires additional support. Whereas the rete algorithm
can inherently deal with the retraction of facts, this requires the negated fact
to be propagated through the network. This process can be optimized by ex-
plicitly keeping track of the dependencies between conclusions and facts using a
justification-based truth maintenance system. The remainder of this section will
briefly describe both components which jointly implement the logic coordination
language prescribed by the Fact Space Model.

Inference Engine. The rete algorithm allows for the efficient derivation of
valid conclusions given a set of facts by compiling these rules into a so-called
rete network [4] with built-in caches for intermediate results. We exemplify the
compilation of such a rule using the example given in figure 3, which dealt with
changing the profile of a cellular phone according to the room it was in. The
corresponding network for this rule is shown in figure 4.

Deciding when to change the profile of the cellular phone requires the presence
of multiple facts. First of all, context information from the public interface fact
space is needed to determine in which room the phone currently resides. Secondly,
a private fact is needed which states the user’s preferred profile for that room.
Compiling the right-hand side of the rule, involves two steps :

1. Every fact is represented in the network by a filter node which will be trig-
gered whenever a new fact is asserted with the correct name. When the fact
is qualified, the filter node ensures it will be notified by registering a reaction
for facts of that type in the underlying Lime distribution layer. As part of
filtering out relevant events, the filter nodes also check simple constraints
with respect to constants. In the example, the left-most filter node is used
to filter out any location facts which are not related to the cellular phone.
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2. Facts are subsequently combined pairwise using join nodes which ensure that
constraints spanning multiple facts are upheld. A typical example of such a
constraint is that variables with the same name have the same value. Simi-
larly, if a rule contains explicit constraints on two variables (using relational
operators such as <=, >= or =\=), these are checked by the first join node
which has access to both variables.

private fact
space

Type = location
arg[1] = myID

Type = room

Cache

?room :
location.arg[2] = room.arg[1]

Legend

FilterNode

Join Node

Input Node

profile(?profile)
:switch(?profile)ProductionNode

Cache

Cache

?room ?profile

?room ?profile

?room
meetingRoom
office

silent
general

Public:
federated fact

space

Fig. 4. rete network to switch the profile of a cellular phone based on location

Having built a network which filters out the relevant combinations of facts
that may trigger a rule, compiling its left-hand side is simply adding a produc-
tion node as the child of the lowest join node for that rule. Upon triggering a
production node, facts are added to their designated fact spaces (recall that if
no qualification is given the fact is considered private) and application-specific
actions need to be performed (invoking the do method). It is critical that a
production node encapsulates an atomic activation, implying that the inference
engine may only re-evaluate rules after the production node completed its task.
If this constraint is not upheld, inconsistent behaviour may be triggered by mu-
tually exclusive rules with negated clauses in the right-hand side (e.g. A and !B,
and A and B).

Truth Maintenance System. The Fact Space Model introduces a logic coor-
dination language which offers applications the ability to reason over a consistent
view of their environment. Given that this environment is a mobile ad hoc net-
work with a fluid topology and transient connectivity, this implies that suites
of facts will be frequently retracted as devices move out of range. Such retrac-
tion cannot be delayed as this would compromise the consistency of the view an
application has of its environment. Moreover, as the connectivity between the
devices in a mobile ad hoc network is transient, it is quite likely that the same
suite of facts will be reasserted later on as the communication is restored. This
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particular set of constraints necessitates the introduction of additional support
to handle the retraction of facts in an acceptable way.

The rete algorithm can handle the retraction of facts using rematch-based
removal which involves propagating the dual of the removed fact through the
network. However, this is a rather costly operation as all checks in the filter and
join nodes need to be recomputed, and more importantly, it also removes useful
information which could be used when the same fact is reasserted later on.

To optimize the retraction of facts, we use the scaffolding technique described
by Perlin [5]. Concretely, this implies that a truth maintenance system is used
which keeps track of the causal links between facts and conclusions. These causal
links are said to be the justification for believing the conclusion. When a fact is
subsequently retracted, it is straightforward to identify precisely those conclu-
sions that need to be undone. Moreover, rather than deleting the information
upon retracting, the causal link is preserved yet marked to be currently deacti-
vated. If the same fact is reasserted shortly afterwards, this information can be
used to reactivate the tuple.

4 Building Context-Aware Applications

We have employed Crime to build a suite of context-aware applications all
of which rely on location-based information. Throughout this paper we have
already illustrated a simple application which allows switching the profile of a
cellular phone. We have built similar light-weight applications such as an in/out
board and a messenger service [6] which are presented in more detail at our
website2. In this paper we present a slightly more involved application, namely
a context-aware jukebox [7,8]. The precise scenario is described first, followed by
a discussion of the location-based support for the application before we describe
the rules which comprise the juke-box application itself.

4.1 A Context-Aware Jukebox

Alice, Bob and Carol are students which share an apartment. When they are
not attending classes or studying, a great deal of their life is all about music.
As a consequence, when one of them is relaxing in the joint living room of their
apartment, it is quite common to find their jukebox playing music. Unfortu-
nately, the students do not always share one another’s taste in music. Whereas
this might be a recipe for endless quarrels in any other situation, there is no
arguing over who is in charge of choosing the music being played. This is due
to the fact that the jukebox is in fact a small computer (a Mac Mini in our
setup) which combines information regarding the presence of its users with their
respective musical preference to construct a playlist which is acceptable for all
present users. Moreover, If Alice, Bob and Carol invite some friends, their musi-
cal preferences can be taken into account as well. Finally, the jukebox can also
stop playing automatically when it detects that no users are present.
2 http://prog.vub.ac.be/amop/research/crime
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A variety of issues are important to build a similar system. First of all, a
fairly reliable mechanism is needed to detect when users are in a particular
room. Second, when a user enters the room, his musical preferences should be
queried and possibly the jukebox should be turned on. Thirdly, when a guest
is invited, he may not have the appropriate software to cast his vote in the
music selection and this software should be offered to him. Finally, the music
selection should be designed to take into account the musical preferences of the
present users. We will present the necessary building blocks for this setup in the
remainder of this section.

4.2 Detecting a User’s Location

Over the past few years, a large quantity of systems to derive a person’s location
have been developed. Positioning users indoor is usually achieved by giving them
a small device which is tracked using wireless communication. The technology
used may vary from infrared signals (as used in the seminal work on the Ac-
tive Badge system [9]) up to the recently developed rfid tags [10]. Whereas the
choice of which technology to use may be critical as it influences the size and
battery consumption of the device that needs to be carried around, the effect
on the proposed application is rather minimal. While developing the context-
aware jukebox we have therefore adopted a conservative stance and employed
the bluetooth connectivity offered by the jukebox to detect users (by means of
their bluetooth-equipped cellphones).

Our concrete setup consists of an event-driven application which is used to
detect all reachable bluetooth devices. Upon detecting a new device, it triggers an
embedded Crime process by asserting a private fact (e.g. observed ("Alice’s
Phone")). The application further consists of a trivial mapping of such facts
onto public location facts, as we have used in previous examples in the paper.

4.3 Deploying Applications

We have identified the deployment of applications, in this case to specify one’s
musical preference, as an essential aspect of the scenario at hand. Obviously,
the deployment of Crime applications requires the presence of a minimum of
infrastructure. Therefore, every Crime engine is equipped with a minimal appli-
cation which listens for facts describing available applications. These applications
are presented to the user who can opt to deploy them. Figure 5 illustrates how
a simple rule can be used to notify the user interface (using a custom action
offer). The actual deployment (i.e. downloading the application from the url
and running it) is done by the underlying application.

One notable property of this application is that the list of available appli-
cations can be dynamically updated as the topology of one’s mobile network
changes. As the service descriptions are represented as public facts, these facts
are automatically retracted from the fact space. In response, the undo method
of the offer action will be invoked. In our current implementation, this method
will simply remove the application from the list of available applications. It is
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:offer(?name ?url) :-
application(?name ?url).

application(jukebox, "http://prog.vub.ac.be/amop/crime/jukebox.zip").

Fig. 5. Supporting the advertisement of available applications

also possible to treat applications which were deployed separately using a small
set of additional rules. The gist of the system would be to let the deployment
application assert a private fact whenever it deploys an application, such that
the Crime engine can include this information in its reasoning.

4.4 Music Selection

One of the major advantages of using a coordination language is that it offers
a separate medium to specify the coordination and distribution aspects of an
application. Concretely this implies that a traditional, non-distributed applica-
tion can be adapted to provide additional or smarter behaviour when employed
in a mobile context, as long as it provides the adequate hooks. To illustrate the
potential of the Fact Space Model to be employed in this context, we have opted
to use an existing and highly scriptable music player in our jukebox example.
The iTunes music player3 is an established software artifact which provides a
rich set of hooks through its AppleScript support.

The Crime support for determining which music to play is described by the
rules in figure 6. The first rule uses an application-specific action toggle to
switch the jukebox on as soon as it detects a person in the living room. This
detection is based on the location facts which were published by the location
sensing support described in section 4.2. The second rule will use updateRating
to change the average preference attributed to a genre based on the amount
of people preferring a particular genre and the total amount of people in the
room. This is sufficient to ensure that the music played by the jukebox will
be appreciated by the users presented in the living room, as iTunes offers a
dedicated party shuffle playlist which plays a selection of highly-rated music.

The rating of a particular genre depends on the number of present users
which prefer a particular genre, as well the total amount of users in the living
room. To compute these numbers, Crime integrates support for two accumu-
lation techniques borrowed from Prolog, namely findall and bagof. The for-
mer is used to find all values for the ?person variable who are located in the
living room and accumulate them in the ?persons variable. To find out how
many people like a particular genre, the bagof construct is used, which also
accumulates all values for the ?person variable, yet groups them according to
the corresponding values for other free variables (the ?genre variable in the
example).

3 Copyright 2000-2006 Apple Computer Inc.
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:toggle() :-
location(?person, "Living Room").

:updateRating(?genre, ?rating) :-
category(?genre, ?absolute),
total(?total),
rating is ?absolute / ?total.

total(?quantity) :-
findall(?person, (

location(?person, "Living Room")),
?persons),

length(?persons, ?quantity).

category(?genre, ?quantity) :-
bagof(?person, (

location(?person, "Living Room"),
prefers(?person, ?genre)),
?persons),

length(?persons, ?quantity).

Fig. 6. Rule set to customize jukebox playlist

5 Related Work

The main contribution of the Fact Space Model is that it introduces the notion
of causality in a coordination language as a fundamental mechanism to offer ap-
plications fine-grained control over the effects of device disconnection in mobile
ad hoc networks. The introduction of causality is achieved by using a logic lan-
guage which essentially reasons over a distributed fact base in order to coordinate
the different applications involved. Finally, we have illustrated the applicability
of the Fact Space Model to develop context-aware application. Therefore, the
Fact Space Model can be contrasted to previous work in three fields of research,
namely coordination languages, distributed reasoning systems and context-aware
computing middleware. Our discussion of related work will therefore highlight the
contributions in each of these research fields which are the most closely related
to the Fact Space Model.

5.1 Coordination Languages

Coordination languages can be categorized according to the primitive commu-
nication support they offer: communication can be based on directed channels
which connect two processes (the endpoints of such channels may vary over
time), or it can be achieved using the notion of a shared blackboard which pro-
vides processes with an undirected communication model. The Fact Space Model
employs the latter model of communication, making it akin to tuple space-based
coordination languages.



Fact Spaces: Coordination in the Face of Disconnection 279

During the discussion of the Fact Space Model in section 2, we have already in-
dicated that it borrows the notion of a federated space from Lime [3]. Moreover,
through the introduction of an inference engine, our model allows responding to
changes in the state of the federated space (rather than operations performed on
them) allowing behaviour similar to Lime’s reactions. At first sight, reacting to
disconnection can be introduced in Lime by allowing such reactions to include a
compensating action which is then triggered upon disconnection. To the best of
our knowledge, such support has not been introduced thus far. Even with such
support in place, some differences remain with respect the Fact Space Model.
First of all, the model has innate support for dealing with disconnection, requir-
ing no additional infrastructure to detect and propagate disconnection events.
More importantly, by keeping track of the causal connection between events,
hand-coding compensating actions is only necessary when the reaction is re-
lated to the application’s behaviour rather than with how it interacts with other
applications.

Tuple space-based communication can equally well be achieved without the
notion of a transiently shared tuple space, as is exemplified by tota [11]. Instead
of implicitly sharing tuples when the hosting devices come into one another’s
range, tota tuples are instrumented with behaviour dictating when they may
be copied (or moved) from one tuple space to the next. As tuples are copied,
these tuples are not automatically retracted when the emitting device goes out
of range. Using tota’s support to notify tuples of system events, tuples can
be removed after a certain period is elapsed. Broadcasting such tuples periodi-
cally would then allow to detect disconnection. Another possibility would be to
reify the transitive unreachability of a device as an event of its own. However,
even if the tuple can be removed when necessary, tota suffers from the same
problems as Lime, namely that for each reaction that needs to be undone the
corresponding compensating action needs to be hand-coded.

5.2 Distributed Reasoning Systems

The Fact Space Model goes beyond traditional coordination languages in that it
introduces the notion of an inference engine coupled to a truth maintenance sys-
tem. It therefore embodies a distributed reasoning engine, with explicit support
for dealing with a fluid topology of fact providers. Whereas abundant distrib-
uted reasoning engines exist, most of them were introduced purely for the sake
of parallelism [12,13], rather than to support reasoning in and about a physically
distributed context.

UbiES is an expert system for modelling context-aware applications in a no-
madic network setting [14]. The lack of support for ad hoc networks shows in
various parts of the proposal: First of all, context information is managed in a
context database which is apparently centralized. Moreover, clients are equipped
only with a web browser leaving the actual functionality on a server. Finally,
UbiES focusses on a single application at a time rather than at coordinating the
interplay of various applications.
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The Fact Space Model is closely related to DJess [15], a distributed variant of
the Jess forward chainer [16]. Similar to the Fact Space Model, DJess connects
different inference engines allowing them to share contextual information and
trigger one another’s reactive behaviours. However, the fundamental difference
between both systems is that DJess does not consider applications for a mobile
ad hoc network with a fluid topology. A first indication is that DJess features
a single centralized server which serves as an intermediate to communicate facts
between the individual clients. Furthermore, concurrency control is pessimistic
as all facts needs to be locked before executing the actions associated with a
rule. Finally, DJess provides no support to detect nor respond to disconnection.

Cooperative artefacts [23] sport a reasoning engine which is specifically tai-
lored for mobile ad hoc networks. Similar to the Fact Space Model, it offers
devices the means to reason about a distributed knowledge base representing
their immediate environment using Prolog-like rules. The chief difference be-
tween both systems lies in the type of applications they support. Cooperative
artefacts are embedded devices with very limited resources designed to address
one specific problem, whereas the Fact Space Model addresses the collaboration
of different idiosyncratic applications on high-end mobile devices. One aspect
where the difference in both the underlying hardware and the supported appli-
cations has a considerable influence is the inference strategy. Cooperative arte-
facts rely on a backward chaining inference engine whereas the Fact Space Model
emphasizes the importance of a forward chaining inference engine. Section 6.2
explains in more detail why this difference is relevant.

5.3 Context-Aware Computing Middleware

As illustrated in section 4, the Fact Space Model lends itself quite well to the
development of context-aware applications. Its forward-chained rules could be
interpreted as a structured and declarative subscription to relevant context in-
formation publishers. However, comparing it to classical middleware such as the
Context Toolkit [6], JCAF [17] and WildCAT [18], a few differences are imme-
diately apparent. First of all, the distribution model underlying the Fact Space
Model is based on a federated space rather than on event channels. This is es-
sential as it permits detecting when facts are retracted, and to act upon this
observation. Secondly, the Fact Space Model relies on a separate logic language
to describe the influence of context, a trait it shares with the approaches dis-
cussed in the remainder of this section.

Chisel is a system which primarily focusses on describing the concrete effects
of contextual changes by assigning meta-types to runtime objects [19]. As a
coordination language, the Fact Space Model was not designed to support such
advanced adaptation strategies. Nevertheless, Chisel and the Fact Space Model
are quite complementary as the latter offers a declarative language with support
to respond to a combination of events as well as a clear distribution model for
context information. Both features are lacking in Chisel’s event-condition-action
language to specify when adaptations should be plugged in.



Fact Spaces: Coordination in the Face of Disconnection 281

Gaia’s active spaces [20] have been extended with a dedicated language based
on first order logic to describe how a system should adapt according to context
information [7]. The context model for Gaia’s Active Spaces uses first order
logic to describe how to adapt to context information. Whereas the use of first
order logic results in a similar expressive power to our proposal, quite a few
differences remain between Gaia and the Fact Space Model: First of all, Gaia

relies on context providers which publish information on channels managed by a
centralised infrastructure. Another notable difference is that Gaia uses a stan-
dard Prolog implementation, rather than a forward chainer, which necessitates
a manual triggering of rules upon context changes. Most importantly, Gaia as-
sumes reliable connections and does not specify how to respond when no context
information can be read, nor how this affects previously made decisions.

The Fact Space Model bears the most similarity to the Cortex middleware
[21] which uses clips [22], a production system to reason about context informa-
tion and to trigger reactions using clips’s foreign function interface. The chief
differences between Cortex and the Fact Space Model is that the latter is based
on the notion of a federated space to exchange information, rather than on the
publish/subscribe paradigm and most importantly, that the Fact Space Model
provides support to meaningfully deal with the retraction of information from
the said federated space.

6 Discussion

The Fact Space Model is a logic coordination language which allows reasoning
about a distributed knowledge base which functions as a view on the (physical)
environment. Moreover, the Fact Space Model requires this view to be kept con-
sistent to ensure that applications do not act upon stale facts. This requirement
has a direct influence on two important aspects of the Fact Space model which
will be the topic of discussion in this section.

Automatic Retraction. We have adopted the stance that facts whose provider
has gone out of earshot are to be retracted from the knowledge base. This par-
adigmatic decision is evaluated with respect to the opportunities it leaves the
programmer to encode persistent facts, i.e. facts which are not automatically
retracted when its provider goes out of earshot.

Inference Strategy. The choice for a forward chaining inference engine also
follows from the requirement that applications should not act upon stale facts.
Its data-driven reasoning strategy aligns well with the fact that changes to the
knowledge base should be promptly reflected in the application’s behaviour. This
section provides a more thorough analysis of the differences with a goal-driven
backward chaining strategy such as the one used in cooperative artefacts [23].

6.1 Persistent Facts

A distinguishing characteristic of the Fact Space Model is that it reifies device
disconnection by retracting all facts published by that device. This is crucial to
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ensure that applications have a consistent view of their environment where all
facts in the knowledge base are guaranteed to be true. Without the automatic
retraction of facts, applications could be presented with stale data which leads to
a variety of problems. Consider the following example: a location sensor detects
that Alice is in her office and publishes this information. Bob’s PDA receives
this information and subsequently goes out of range. If the location information
would not be retracted, the PDA would need to assume that Alice stays put,
as it is unable to receive any new information. Such assumptions are clearly a
source for unadjusted behaviour such as calling Alice’s office number rather than
her cellular phone since we presume to know her location. In this case, having
no information available is clearly better than having incorrect information.

The semantics of the Fact Space Model align with those of the underlying dis-
tribution model of federated spaces, and may seem quite natural in the location-
based example given above. However, the retraction of facts is not always the
desired semantics. For instance, when a specific printer is out of reach, the fact
representing its availability should be retracted, yet it can be useful to keep a
fact representing information about the printer such as its maximal resolution.
At present, Crime offers no direct support to achieve such behaviour, though
this behaviour can be conceived in the following way:

Persistent Facts. One can conceive a :persistent custom action which adds
a fact in its activate method, yet does not remove the fact in its deactivate
method. As exemplified in figure 6.1, this mechanism can be used in the example
to add a fact which represents the information about a printer, whenever a
(public) fact representing the availability of a printer is first detected in the
environment. Using a similar custom action, such persistent facts can then also
be removed from the system, for instance at the user’s request.

:persistent(knownPrinter(?name, ?dpi)) :-
public -> printerAvailable(?name, ?dpi, ?ip),
not knownPrinter(?name, ?dpi).

Fig. 7. Adding persistent facts in Crime

6.2 Inference Strategy

At the heart of the Fact Space Model lies a logic-based coordination language
reasoning over a distributed knowledge base. In principle, the interpretation of
the rules in the coordination language can be achieved using two distinct infer-
ence strategies: namely backward and forward chaining. Backward chaining is
a goal-driven strategy which attempts to prove queries supplied by the users,
whereas forward chaining is a data-driven strategy which derives all valid con-
clusions from a given data set. This section briefly discusses the merits of both
strategies and motivates Crime’s use of a forward chaining inference engine.

Backward chaining is a commendable strategy to reason over a stable distrib-
uted knowledge base which is dedicated to a single application. The underlying
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reason for this restriction is that in order to respond to the availability of new
data, the inference engine needs to be triggered explicitly. For instance, Stro-
hbach et al. issue a new attempt to prove a predefined set of goals whenever a
change in the distributed knowledge base is observed [23]. Each such attempt
completely reconstructs the proof which can be both costly and time-consuming
(e.g. it may require remote communication). It is therefore important to ensure
that such attempts are only made when the result produced by the inference
engine is likely to have changed. Hence, the use of backward chaining inference
engines for the coordination of different device should be restricted to cases where
all facts in the knowledge base are related to a single application. In these cases,
the addition of facts in the knowledge base (which in turn triggers the inference
engine) is the most likely to affect the outcome of the reasoning process.

Forward chaining on the other hand is a useful strategy to reason over a fluc-
tuating distributed knowledge base which is shared by different idiosyncratic
applications. Forward chaining is a data-driven reasoning strategy which implies
that the inference engine is triggered whenever new data becomes available. The
chief difference with the strategy outline above is that when new data becomes
available, the inference engine derives the influence this fact has on previously
derived information, rather than reconstructing the entire proof. This strategy
is particularly beneficiary when changes to the knowledge base (which may orig-
inate from different applications) may not be relevant, as such changes can be
filtered out in the first step of reasoning.

7 Conclusion

Starting from a traditional coordination language based on a Lime-like federated
tuple space, this paper has explored how applications can be presented with a
consistent view of their environment, allowing them to adapt their behaviour
according to their current context. Crucial in such applications is that they are
notified of all relevant changes in the environment, including when information
becomes unavailable as a consequence of user mobility or transient disconnec-
tion. This has led us to propose the Fact Space Model, which differs from a
classical tuple space in two regards: First of all, the federated space is treated as
a knowledge base where both the assertion and the retraction of facts are rele-
vant. Secondly, to provide a minimal and reasonable behaviour when retracting
facts, the Fact Space Model is a fully reactive system where the causal relations
between reactions and the triggering of facts is documented using logic rules.

The Fact Space Model combines a particular set of features, which clearly sets
it apart from existing work on coordination languages, distributed reasoning
engines and context-aware computing. First of all, using a federated space to
manage context information rather than a publish-subscribe mechanism allows
detecting the retraction of information. This feature allows the Fact Space Model
to respond to the disconnection of a context provider, a meaningful event when
dealing with mobile ad hoc networks with a fluid topology. Furthermore, the
Fact Space Model is a fully reactive coordination language based on a forward
chained logic language. This language offers a similar programming model as
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reactive tuple spaces, with the added benefit of delimiting the causal relation
between facts and the resulting actions. This causal link allows undoing the
effects of a context-dependent adaptation when the context is no longer valid.
This feature is currently not offered by coordination languages for mobile ad
hoc networks. Finally, the Fact Space Model differs from existing distributed
reasoning systems as it uses a distribution model which does not rely on reliable
communication or a centralized architecture.
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12. Eliëns, A.: DLP: a language for distributed logic programming: design, semantics,
and implementation. John Wiley & Sons, Inc, New York, NY, USA (1992)



Fact Spaces: Coordination in the Face of Disconnection 285

13. Cunha, J., Medeiras, P., Carvalhosa, M., Pereira, L.: Deltaprolog: A distributed
logic programming language and its implementation on distributed memory proces-
sors. In: Kacsuk, P., Wise, M. (eds.) Implementations of Distributed Prolog, pp.
335–356. John Wiley & Sons, New York, NY, USA (1992)

14. Kwon, O., Yoo, K., Suh, E.: ubiES: An intelligent expert system for proactive
services deploying ubiquitous computing technologies. In: HICSS ’05: Proceedings
of the Proceedings of the 38th Annual Hawaii International Conference on System
Sciences (HICSS’05) - Track 3, IEEE Computer Society, Washington, DC, USA,
85.2 (2005)

15. Cabitza, F., Sarini, M., Seno, B.D.: Djess - a context-sharing middleware to deploy
distributed inference systems in pervasive computing domains. In: International
Conference on Pervasive Services, 2005, ICPS ’05., pp. 229–238. IEEE Computer
Society Press, Los Alamitos (2005)

16. Friedman-Hill, E.: Jess in Action: Java Rule-Based Systems. Manning Publications
Co. (2003)

17. Bardram, J.E., Hansen, T.R.: The aware architecture: supporting context-mediated
social awareness in mobile cooperation. In: CSCW ’04: Proceedings of the 2004
ACM conference on Computer supported cooperative work, pp. 192–201. ACM
Press, New York (2004)

18. David, P.C., Ledoux, T.: Wildcat: a generic framework for context-aware applica-
tions. In: MPAC ’05: Proceedings of the 3rd international workshop on Middleware
for pervasive and ad-hoc computing, pp. 1–7. ACM Press, New York (2005)

19. Keeney, J., Cahill, V.: Chisel: A policy-driven, context-aware, dynamic adaptation
framework. In: POLICY ’03: Proceedings of the 4th IEEE International Work-
shop on Policies for Distributed Systems and Networks, pp. 3–14. IEEE Computer
Society Press, Los Alamitos (2003)

20. Roman, M., Hess, C.K., Cerqueira, R., Ranganathan, A., Campbell, R.H., Nahrst-
edt, K.: Gaia: A middleware infrastructure to enable active spaces. IEEE Pervasive
Computing 1, 74–83 (2002)

21. Sorensen, C.F., Wu, M., Sivaharan, T., Blair, G.S., Okanda, P., Friday, A., Duran-
Limon, H.: A context-aware middleware for applications in mobile ad hoc envi-
ronments. In: MPAC ’04: Proceedings of the 2nd workshop on Middleware for
pervasive and ad-hoc computing, pp. 107–110. ACM Press, New York (2004)

22. Giarratano, J.C., Riley, G.: Expert Systems: Principles and Programming.
Brooks/Cole Publishing Co., Pacific Grove, CA, USA (1989)

23. Strohbach, M., Gellersen, H.W., Kortuem, G., Kray, C.: Cooperative artefacts: As-
sessing real world situations with embedded technology. In: Davies, N., Mynatt,
E.D., Siio, I. (eds.) UbiComp 2004. LNCS, vol. 3205, pp. 250–267. Springer, Hei-
delberg (2004)



Component Connectors with QoS Guarantees�

Farhad Arbab, Tom Chothia, Sun Meng, and Young-Joo Moon

CWI, Kruislaan 413, Amsterdam, The Netherlands
{Farhad.Arbab,T.Chothia,Meng.Sun,Y.J.Moon}@cwi.nl

Abstract. Connectors have emerged as a powerful concept for composition and
coordination of concurrent activities encapsulated as components and services.
Compositional coordination models and languages serve as a means to formally
specify and implement component and service connectors. They support large-
scale distributed applications by allowing construction of complex component
connectors out of simpler ones. Modelling, analysis, and ensuring end-to-end
Quality of Service (QoS) represent key concerns in such large-scale distributed
applications. In this paper we introduce a compositional model of QoS, called
Quantitative Constraint Automata, that reflects the underlying architecture of
component/service composition represented by the Reo connector circuits. These
can support compositional reasoning about component/service connectors, mod-
elled as Reo circuits with QoS properties.

Keywords: Coordination, Composition, Reo, Quality of Service, Quantitative
Constraint Automata.

1 Introduction

Service-oriented computing (SOC) [14] is an emerging paradigm for the development
of complex applications that may run on large-scale distributed systems. Such systems,
which typically are heterogeneous and geographically distributed, usually exploit com-
munication infrastructures whose topology frequently varies and components can, at
any moment, connect to or detach from. Compositional coordination models and lan-
guages provide a formalisation of the “glue code” that interconnects the constituent
components/services and organises the communication and cooperation among them in
a distributed environment. They support large-scale distributed applications by allowing
construction of complex component connectors out of simpler ones.

An example of such a model is Reo [2,6], which offers a powerful glue language for
implementation of coordinating component connectors based on a calculus of channels.
The work presented here adds Quality of Service to Reo, hence giving us a way of co-
ordinating components that takes into account their costs and the costs of coordination.

Quality of Service (QoS) is a measure of the non-functional properties of services
along multiple dimensions, such as reliability, security, scalability, response time, etc.
Over the past few decades, several quantitative stochastic methods (e.g., stochastic Petri
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Nets [15], interactive Markov Chains [12] and different kinds of stochastic process
algebras [8,11,13]) have been proposed and used in a variety of application areas to
study different QoS metrics, mainly on performance evaluation. In recent years we
have observed the phenomenon of unbundling of complex monolithic IT and commu-
nication services causing large-scale distributed applications to cross intra- and inter-
organisational borders. In such environments it becomes a great challenge to provide
end-to-end QoS. A promising approach to meet this challenge advocates a compo-
sitional approach to provisioning QoS, which allows one to express connector QoS
requirements as QoS requirements on the connector’s constituent basic elements. How-
ever, extending connector specifications directly with information about non-functional
concerns limits the reusability of the connector specification and hence any implemen-
tation of it. Thus there has been a great deal of interest recently in techniques to provide
an effective separation of concerns for end-to-end non-functional requirements and the
more stable functional requirements. Reo is a good candidate to serve as the base model
for a calculus for compositional QoS, because it offers a fully compositional structure of
architecturally meaningful user-defined primitives (i.e, channels) to construct systems
with complex behavior, involving arbitrary combinations of synchronous and asynchro-
nous protocols. Analytic or experimental QoS models for such structurally meaningful
primitives are more likely to be available, robust, and application context independent
(i.e., reusable).

QoS aspects have been handled by using constraint semirings (c-semirings for short)
in [9,20]. Assuming a suitable level of abstraction for QoS constraints and a metric
for the actual QoS values, c-semirings provide an algebraic structure with two oper-
ations, one to select among values and the other to combine values into a new QoS
value. Thus compositionality of QoS values is guaranteed in this approach. Chothia and
Kleijn extend c-semirings to an algebraic structure called Q-algebra [10], which have
two operators for combining QoS values. In this way it becomes possible both to com-
bine QoS values when they occur sequentially and also when they occur concurrently.
Moreover, the QoS values can also be compared within the algebra. In general, QoS
values are tuples where each component represents a particular aspect: the entries can
be of different kinds (numerical to indicate latency, access rights of a service, mem-
ory usage, etc.) and a finite number of Q-algebras may be combined as a tuple with
tuples as its values. The operators that calculate the combination of costs can be simple
(e.g. addition or multiplication) giving an approximation of the true cost or much more
complex, giving an accurate picture. The semiring framework, on which Q-algebras are
based has been successfully used to model a range of real life situations [19]. Q-algebra
is also used to build an automata model called Q-automata [10], which can be used to
represent components or channels with costs.

The purpose of this paper is to introduce an operational model for reasoning about
general QoS properties of the exogenous channel-based coordination language Reo
[1,2,4]. An operational semantics of Reo connector circuits has been provided by con-
straint automata [6]. Extensions of constraint automata have been investigated for real-
time constraints on behaviour of component connectors [3] and to study probabilistic
and stochastic properties [5,7].
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In this paper we consider the quality aspects of Reo circuits when the specification of
channels and component interfaces can involve non-functional requirements. Because
connectors, not components, are the primary concern in Reo, our primary interest here
is with channels whose behaviour involves quality features and their composition. Re-
markably, we do not refer to specific QoS aspects related to concrete services. On the
contrary, we are concerned with a unifying theory of QoS model that might be used
for different QoS measures. We introduce Quantitative Constraint Automata (QCA)
as an extension to ordinary constraint automata with QoS values added as additional
labels to the individual transitions indicating their use of resources, costs, reliabilities,
etc. when executed. To support compositional reasoning, we provide semantic operators
corresponding to Reo’s main primitives (join and hiding) to model complex component
connectors, and thus obtain a compositional framework to generate QCA from a given
Reo circuit. Furthermore, we present several notions of simulation for QCA that serve
to formalise the replacability of Reo circuits by means of refinement and cost reduction.

The rest of this paper is organised as follows: Section 2 contains a brief introduction
to Reo and constraint automata. In Sections 3 and 4 we introduce QCA and show how
Reo connectors are equipped with QoS characteristics. In Section 5 we present notions
of simulation on QCA and their relationship. Section 6 concludes the paper.

2 Reo and Constraint Automata

In this section we provide a brief introduction to Reo [2], which is a channel-based
exogenous coordination model wherein complex coordinators, called connectors, are
compositionally built out of simpler ones. We summarise only the main concepts in Reo
and its constraint automata semantics here. Further details about Reo and its semantics
can be found in [2,4,6].

lossy synchronous channel synchronous drainsynchronous channelFIFO1 channel

Fig. 1. Some Basic Channels in Reo

Complex connectors in Reo are organised in a network of primitive connectors,
called channels, that serve to provide the protocol that controls and organises the com-
munication, synchronisation and cooperation among the components/services that they
interconnect. Each channel has two channel ends. There are two types of channel ends:
source and sink. A source channel end accepts data into its channel, and a sink chan-
nel end dispenses data out of its channel. It is possible for the ends of a channel to be
both sinks or both sources. Reo places no restriction on the behaviour of a channel and
thus allows an open-ended set of different channel types to be used simultaneously to-
gether. Each channel end can be connected to at most one component instance at any
given time. Figure 1 shows the graphical representation of some simple channel types
that will be used in this paper. A FIFO1 channel (FIFO1) represents an asynchronous
channel with one buffer cell which is empty if no data item is shown in the box (as
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the one in Figure 1). If a data element d is contained in the buffer of a FIFO1 channel
then d is shown inside the box in its graphical representation. A synchronous channel
(Sync) has a source and a sink end and no buffer. It accepts a data item through its
source end iff it can simultaneously dispense it through its sink. A lossy synchronous
channel (LossySync) is similar to synchronous channel except that it always accepts
all data items through its source end. The data item is transferred if it is possible for
the data item to be dispensed through the sink end, otherwise the data item is lost. A
synchronous drain (SyncDrain) has two source ends and no sink end. It can accept a
data item through one of its ends iff a data item is also available for it to simultaneously
accept through its other end as well.

Connectors are constructed by composing simpler ones via the join and hiding op-
erations. Channels are joined together in a node which consists of a set of channel
ends. Nodes are categorised into source, sink and mixed nodes, depending on whether
all channel ends that coincide on a node are source ends, sink ends or a combination
of the two. The hiding operation is used to hide the internal topology of a component
connector. The hidden nodes can no longer be accessed or observed from outside.

A component can write data items to a source node that it is connected to. The
write operation succeeds only if all (source) channel ends coincident on the node accept
the data item, in which case the data item is transparently written to every source end
coincident on the node. A source node, thus, acts as a replicator. A component can
obtain data items, by an input operation, from a sink node that it is connected to. A
take operation succeeds only if at least one of the (sink) channel ends coincident on
the node offers a suitable data item; if more than one coincident channel end offers
suitable data items, one is selected non-deterministically. A sink node, thus, acts as
a non-deterministic merger. A mixed node non-deterministically selects and takes a
suitable data item offered by one of its coincident sink channel ends and replicates it
into all of its coincident source channel ends. Note that a component cannot connect
to, take from, or write to mixed nodes. At most one component can be connected to
a (source or sink) node at a time. The I/O operations are performed through interface
nodes of components which are called ports.

Example 1. Figure 2 shows a Reo connector that implements the behaviour of a black-
box that in the workflow literature is called a discriminator. The first item that arrives
through one of the writers at nodes A, B or C is selected for output through the taker at

A B C

E F G H

X
Y

D

K

Fig. 2. Discriminator in Reo
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node D. All three input values must arrive before the next cycle can start. Here, we use
this figure to show the visual syntax for presenting Reo connector graphs. The enclosing
thick box in this figure represents hiding: the topologies of the nodes (and their edges)
inside the box are hidden and cannot be modified. Hiding yields a connector with a
number of input/output ports, represented as nodes on the border of the bounding box,
which can be used by other entities outside the box to interact with and through the
connector. The basic channels used in the connector are synchronous channels (like the
edge YD in Figure 2), lossy synchronous channels (e.g., AX, BX and CX in Figure 2),
synchronous drain whose visual symbol appears as the edge EF, FG, GH or HK in
Figure 2, and FIFO1 channel, like the edge AE in Figure 2.

Constraint automata (CA) [6] were introduced as a formalism to capture the opera-
tional semantics of Reo, based on timed data streams which also constitute the founda-
tion of the coalgebraic semantics of Reo [4].

In the sequel, we assume a finite set N of nodes, and Data as a fixed, non-empty
set of data that can be sent and received via channels. A data assignment denotes a
function δ : N → Data where N ⊆ N . We use DA(N) for the set of all data
assignments for the node-set N . CA use a symbolic representation of data assignments
by data constraints which are propositional formula built from the atoms “dA ∈ P ”,
“dA = dB” or “dA = d” and standard Boolean connectors, where A, B ∈ N , dA is
a symbol for the observed data item at node A and d ∈ Data, P ⊆ Data. We write
DC(N) to denote the set of data constraints that at most refer to the observed data items
dA at node A ∈ N , and DC for DC(N ). Logical implication induces a partial order
≤ on DC: g ≤ g′ iff g ⇒ g′.

A constraint automaton over the data domain Data is a tuple A = (S, s0, N , −→)
where S is a set of states, also called configurations, s0 ∈ S is its initial state, N is a
finite set of nodes, −→⊆

⋃
N⊆N S×{N}×DC(N)×S, called the transition relation.

A transition fires if it observes data items in its respective ports/nodes of the component
and according to the observed data, the automaton may change its state.

We write s
N,g

−−−→ s′ instead of (s, N, g, s′) ∈−→ and refer to N as the node-set

and g the guard for the transition. By an instance of s
N,g

−−−→ s′ we mean a transition

of the form s
N,δ

−−−→ s′ where δ is a data assignment for the nodes in N with δ |= g.
The intuitive operational behaviour of a constraint automaton can be specified by

its runs. A run in a constraint automaton is defined as a (finite or infinite) sequence of
consecutive transition instances

r = s0
N0,δ0−→ s1

N1,δ1−→ s2
N2,δ2−→ . . .

We require that runs are either infinite or finite runs where the last state sn does not
have any outgoing transition whose node set N consists of mixed nodes only. This
requirement can be understood as a maximal progress assumption for the mixed nodes.

Figure 3 shows the constraint automata for the basic channels given in Figure 1. Here
and in the following, we skip the trivial guard true.

Constructing complex connectors out of simpler ones is done by the join operation
in Reo. Joining two nodes destroys both nodes and produces a new node on which all
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Fig. 3. Constraint Automata for Basic Reo Channels

of their coincident channel ends coincide. Each channel in Reo, as well as the merger
nodes are mapped to their own corresponding constraint automata. Reo’s join operation
can be realised by the product construction of constraint automata.

The product for two given constraint automata A1 = (S1, s0,1, N1, −→1) and A2 =
(S2, s0,2, N2, −→2) is defined as a constraint automaton A1 �� A2 with the compo-
nents

(S1 × S2, (s0,1, s0,2), N1 ∪ N2, −→)

where −→ is given by the following rules:

– If s1
N1,g1
−−−→1 s′1, s2

N2,g2
−−−→2 s′2, N1 ∩ N2 = N2 ∩ N1 and g1 ∧ g2 is satisfiable,

then 〈s1, s2〉
N1∪N2,g1∧g2
−−−−−−−−→ 〈s′1, s′2〉.

– If s1
N,g

−−−→1 s′1, where N ∩ N2 = ∅ then 〈s1, s2〉
N,g

−−−→ 〈s′1, s2〉.
– If s2

N,g
−−−→2 s′2, where N ∩ N1 = ∅ then 〈s1, s2〉

N,g
−−−→ 〈s1, s

′
2〉.

The first rule applies when there are two transitions in the automata that can fire
together. This happens only if there is no shared name in the two automata that is present
on one of the transitions but not present on the other one. In this case the transition in
the resulting automaton has the union of the name sets on both transitions, and the data
constraint is the conjunction of the data constraints of the two transitions. The second
rule applies when a transition in one automaton can fire independently of the other
automaton, which happens when the names on the transition are not included in the
other automaton. The third rule is symmetric to the second one.

Another operator that is helpful for abstraction purposes and can be used in Reo
to build connectors from networks is the hiding operator which declares the inter-
nal topology of the network as hidden. Hiding takes as input a constraint automaton
A = (S, s0, N , −→) and a non-empty node-set M ⊆ N . The result is a constraint
automaton hide(A , M) that behaves as A except that data flow at the nodes A ∈ M is

made invisible. Formally, hide(A , M) = (S, s0, N \M, −→M ) where s
N̄,ḡ

−−−→M s′
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iff there exists a transition s
N,g

−−−→ s′ such that N̄ = N \ M and ḡ = ∃M [g]. Here
∃M [g] stands short for

∨
δ∈DA(M) g[dA/δ.A|A ∈ M ], where g[dA/δ.A|A ∈ M ] de-

notes the syntactic replacement of all occurrences of dA in g for A ∈ M with δ.A.
Therefore, ∃M [g] formalises the set of data assignments for N̄ that are obtained from
a data assignment δ for N where g holds by dropping the assignments for the nodes in
N ∩ M .

3 Quantitative Constraint Automata

The basic channels presented in Section 2 assume a perfect behaviour of the chan-
nels. However, in real systems, certain channels might have different quality values,
like the time of data transmission, reliability, throughput, etc. The behaviour of such
channels cannot be captured by constraint automata. Several approaches have been de-
veloped to deal with different kinds of quality related properties in connectors [3,5,7].
In this section we introduce the notion of Quantitative Constraint Automata (QCA),
which is an extension of constraint automata with Q-algebra and forms the basis for
compositional specification and reasoning on Quality of Service (QoS) issues for con-
nectors. A Q-algebra is an algebraic structure R = (C, ⊕, ⊗, �,0,1) such that R⊗ =
(C, ⊕, ⊗,0,1) and R� = (C, ⊕, �,0,1) are both c-semirings. C is a set of QoS values
and is called the domain of R. The operation ⊕ induces a partial order ≤ on C, which is
defined by c ≤ c′ iff c ⊕ c′ = c′. Much of the technical details of QCA is identical to or
only slightly different than that of CA as presented in [6]. However, for completeness,
we describe QCA in full detail here.

The states of a QCA stand for the network configurations, e.g., the contents of the
buffers for FIFO channels. Each edge in a QCA is labelled with a tuple (N, g, c) where
N is a set of ports (nodes) in a network where data-flow is observed simultaneously,
g is a Boolean condition on the observed data items, c is a value in the domain C
of a Q-algebra that denotes the QoS or cost value, e.g., the (shortest) execution time,
probability, bandwidth, etc.

We consider the quality of service for the basic channels in Reo by three values: t
(shortest time for data transmission), c (allocated memory cost for the message trans-
mission) and p (reliability represented by the probability of successful transmission).
The corresponding Q-algebras are given as:

– shortest time: (R+ ∪ {∞}, max, +, max, ∞, 0)
– memory cost: (N+ ∪ {∞}, max, +, +, ∞, 0)
– reliability: ([0, 1], min, ×, ×, 0, 1)

Thus the corresponding QCA for the basic (quantitative) Reo channels SyncDrain,
Sync, FIFO1 and LossySync used in this paper are given in Figure 4. For SyncDrain
and Sync, the tuples labelled on the channels denote the corresponding quality of ser-
vice for communication over these channels. For FIFO1, the tuple (t3, c3, p3) presents
the QoS values for the operation to input a data to the buffer, and (t4, c4, p4) denotes the
QoS values for taking the data from the buffer. For LossySync, the tuple (t5, c5, p5)
and (t6, c6, p6) present the QoS values for successful communication over the channel
and information lost respectively.
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Fig. 4. QCAs for the basic Reo channels

Figure 5 shows on its left a quantitative Reo circuit consisting of three channels
AB, AC and BC which are of type SyncDrain, FIFO1 and Sync, respectively. The
behaviour of this circuit can be seen as imposing an order on the flow of data items
written to A and B, through C. The picture on the right shows a QCA corresponding
to this quantitative Reo circuit. In the QCA on the right hand side in Figure 5, location
s0 stands for the initial configuration where the buffer is empty, while location s(d)
represents the configuration where the buffer contains a data element d. If node C is
already for I/O operations in location s(d) then we assume that C takes an element d
from the buffer and this corresponds to the transition labelled with the set {C}, data
constraint dC = d and the QoS values t4, c4, p4 for the shortest time, memory cost and
reliability values of the transition respectively. From the initial location s0 we can input
data from nodes A and B simultaneously, the data input at A will be stored in the buffer
while the data input at B will be directly taken by C if the node C is ready to take it.
The related QoS values are given as in the figure where (ti, ci, pi) represents the related
QoS values for the basic channels, which are specified in Figure 4.

Similar to the work on constraint automata model, in QCA we use a finite set N of
nodes and we do not distinguish between write and read operations at the nodes. We
assume a fixed, non-empty and finite data domain Data consisting of the data items
that can be transmitted through the channels. A data assignment denotes a function
δ : N → Data where ∅ �= N ⊆ N . We use notations like δ = [A �→ δA : A ∈ N ] to
describe the data-assignment that assigns the value δA ∈ Data to every node A ∈ N .
Data constraints can be viewed as a symbolic representation of sets of data assignments.
Formally data constraints are propositional formula built from the atoms “dA = dB”,
“dA = d” and “dA ∈ P ” where A, B are nodes, dA is a symbol for the observed data
item at node A and d ∈ Data, P ⊆ Data. For N ⊆ N , DA(N) denotes the set of
all data assignments for the node-set N and DC(N) denotes the set of data constraints
that at most refer to the terms dA for A ∈ N .
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Fig. 5. A Reo Circuit and its Quantitative Constraint Automata

Definition 1. A Quantitative Constraint Automaton is a tuple Q = (S, s0, N , R, −→)
where

– S is a set of states, also called configurations,
– s0 ∈ S is its initial state,
– N is a finite set of nodes,
– R = (C, ⊕, ⊗, �,0,1) is a labelled Q-algebra with domain C of costs,
– −→⊆

⋃
N⊆N S × {N} × DC(N) × C × S, called the transition relation.

We write q
N,g,c
−−−→ p instead of (q, N, g, c, p) ∈−→ and refer to N as the node-set and

g the guard. Transitions where the node-set N is non-empty are called visible, while
transitions with the empty node-set are called hidden. In a hidden transition, none of
the nodes is visible and the data constraints appear as unknown from outside, thus a
hidden transition is witnessed only by its cost value. We denote hidden transitions by
the label τ together with the cost. Moreover, a hidden transition cannot be carried out
in cooperation with any other transitions. In effect, the ports of a hidden transition are
no longer externally accessible to outside, but the costs of a hidden transition still affect
the overall cost of a run. Each transition represents a set of possible interactions given
by the transition instances that result by replacing the guard g with a data assignment δ
where g holds. The QoS metric of a transition step is represented by the cost value c.

QCA composition is a binary function that maps two QCA with consistent Q-
algebras into a new QCA. In the following definition we assume that the common nodes
of the two QCAs are those where data flow must be synchronised.

Definition 2. For two QCA Q1 = (S1, s0,1, N1, R, −→1) and Q2 = (S2, s0,2, N2, R,
−→2) that have the same Q-algebra R, their product is defined as a QCA

Q1 �� Q2 = (S1 × S2, (s0,1, s0,2), N1 × N2, R, −→)

where −→ is given by the following rules:

– If s1
N1,g1,c1
−−−→ 1 s′1, s2

N2,g2,c2
−−−→ 2 s′2, N1 ∩ N2 = N2 ∩ N1 �= ∅ and g1 ∧ g2 is

satisfiable, then 〈s1, s2〉
N1∪N2,g1∧g2,c1�c2
−−−−−−−−−−−−→ 〈s′1, s′2〉.

– If s1
N,g,c
−−−→1 s′1, where N ∩ N2 = ∅ then 〈s1, s2〉

N,g,c
−−−→ 〈s′1, s2〉.

– If s2
N,g,c
−−−→2 s′2, where N ∩ N1 = ∅ then 〈s1, s2〉

N,g,c
−−−→ 〈s1, s

′
2〉.
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A basic constraint automata can be “lifted” to a QCA by placing the null 1 value
on each of its transitions. Therefore we can define the product of a quantitative and a
non-quantitative constraint automata by applying this lifting and then the product, as
defined above. We also note the product on QCA is associative.

The effect of hiding a node that is internal to some connector in a Reo circuit is that
data flow at that node is no longer observable from outside. However, the quality/cost
value should remain the same whether or not the node is hidden. Therefore, the hiding
operator for QCA is defined as follows:

Definition 3. The hiding operator takes as input a QCA Q = (S, s0, N , R, −→) and
a non-empty node-set M ⊆ N . The result is a QCA hide(Q, M) that behaves as Q
except that data flow at the nodes A ∈ M is made invisible. Formally, hide(Q, M) =
(S, s0, N \ M, R, −→M ) where

– q
N̄,ḡ,c
−−−→M p iff there exists a transition q

N,g,c
−−−→ p such that N \M = N̄ �= ∅ and

ḡ = ∃M [g]. Here ∃M [g] stands short for
∨

δ∈DA(M) g[dA/δ.A|A ∈ M ], where
g[dA/δ.A|A ∈ M ] denotes the syntactic replacement of all occurrences of dA in g
for A ∈ M with δ.A.

– q
τ,c

−−−→M p iff there exists a transition q
N,g,c
−−−→ p such that N \ M = ∅.

The automaton starts in an initial state. If the current state is s then an instance s
N,δ,c
−−−→

s′ of the outgoing transitions from s is chosen, the corresponding I/O operations are
performed and the next state is s′. If there are several outgoing transitions from state
s the next transition is chosen non-deterministically. A formalisation of the possible
(finite or infinite) observable data flow of a QCA is obtained by the notion of a run.

Definition 4. Let s ∈ S be a state of a QCA Q. An s-run in Q denotes a (finite or
infinite) sequence of consecutive transition instances

r = s
N0,δ0,c0−→ s1

N1,δ1,c1−→ s2
N2,δ2,c2−→ . . .

An s-run is called initial if s = s0. For finite runs we require that the last state s′ does
not have an outgoing hidden transition. This can be understood as a maximal progress
assumption for hidden transitions, i.e., steps that do not require any interaction with the
environment. The cost of an s-run r is cost(r) = c0 ⊗ c1 ⊗ c2 ⊗· · · . A weak atomic run

rwa = s
N,δ,c
� s′ exists iff there is a finite run

r = s0
τ0,c0−→ s1

τ1,c1−→ s2
τ2,c2−→ . . .

τn−2,cn−2−→ sn−1
N,δ,cn−1−→ sn

such that s0 = s, sn = s′ and c0 ⊗ c1 ⊗ c2 ⊗ · · · ⊗ cn−1 = c. A weak run rw is defined
analogously to a run as a sequence of weak atomic runs.

We use R(Q) to denote the set of all runs of the QCA Q, and R0(Q) ⊆ R(Q) the set
of all initial runs of Q.
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4 Quantitative Reo Circuits

Reo is a channel-based exogenous coordination model wherein complex coordinators,
called connectors, are built from instances of basic channel types using certain com-
position operators. In this paper, as in [3,4,6], we concentrate on connectors that have
graphical representations as Reo circuits which express the mechanisms that coordinate
the data-flow through the channels connecting the input/output ports of some compo-
nents, as well as the quality of service aspects of the behaviour.

Example 2. We now consider the example given in Figure 5 again. It depicts a con-
nector which consists of three channels: AB, AC and BC. These channels are of type
SyncDrain, FIFO1 and Sync, respectively. According to the definition of the product
operator, the composition of the corresponding QCA is given in Figure 5. We define
the QoS values for the whole connector as: t = max(t1, t2, t3) + t4, c =

∑4
i=1 ci and

p =
∏4

i=1 pi.

provider1 provider2
SyncDrain (t1 = 0, c1 = 3, p1 = 1) (t1 = 0.1, c1 = 2, p1 = 1)

Sync (t2 = 1, c2 = 2, p2 = 0.95) (t2 = 1, c2 = 8, p2 = 0.99)

FIFO1 (t3 = 1, c3 = 2, p3 = 0.9, (t3 = 1, c3 = 5, p3 = 1,
t4 = 0.5, c4 = 2, p4 = 0.9) t4 = 1, c4 = 5, p4 = 0.99)

LossySync (t5 = 1, c5 = 2, p5 = 0.95, (t5 = 1, c5 = 3, p5 = 0.99,
t6 = 0.1, c6 = 1, p6 = 0.95) t6 = 0.2, c6 = 0.5, p6 = 0.99)

Fig. 6. The QoS values for the basic channels

We may have different implementations for the Reo basic channels (and connectors).
These implementations may have different QoS properties. For instance, the table in
Figure 6 presents the QoS values for every basic channel in the Reo circuit of Figure
5 offered by two different service providers. Using these offerings, the QoS values for
the Reo circuit are computed as follows:

– provider1: t = 1.5, c = 9, p = 0.7695;
– provider2: t = 2, c = 20, p = 0.9801.

Suppose now that a client’s QoS requirement of this connector states that the cost of the
whole connector (as defined above) should be no more than 15 units and the probability
of successful transmission should be greater than 90 percent. Neither of the above two
alternatives meet these requirements. However, we can choose the Sync offered by
provider1, and the SyncDrain and the FIFO1 offered by provider2, and compose them
together. Now the QoS value of the whole connector are: t = 2, c = 14, p = 0.9405,
which satisfies the requirement.

Example 3. We now show a more interesting example: the discriminator connector
in Reo as given in Figure 2. The basic channel types SyncDrain, Sync, FIFO1 and
LossySync used in this example are all equipped with QoS labels. The corresponding
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{A,B}, d  =d  , d  =d  

{C,D}, d  =d  \/ d  =d  

{A,B,C}, d  =d  , d  =d  , d  =d  

{B,D}, d  =d  \/ d  =d

{A,C,D}, d  =d

{C}, d  =d

{A,B,D}, d  =d

{B}, d  =d

(T’ , C’ , P’ )

{A}, d  =d

3 3 3

3 3 31 1 1(T , C , P ) (T , C , P )

(T’ , C’ , P’ )1 1 1

(T , C , P )1 1 1

(T’ , C’ , P’ )1 1 1

(T , C , P )1 1 1

(T’ , C’ , P’ )1 1 1

(T , C , P )2 2 2 (T’ , C’ , P’ )2 2 2

(T , C , P )2 2 2

(T’ , C’ , P’ )2 2 2

(T , C , P )

(T’ , C’ , P’ )

2 2 2

2 2 2

{D}, d  =d  \/ d  =d  \/ d  =d 1 32D D D

A A 1 2 3B C

{B,C,D}, d  =dD

D

C

D

B

{A,C}, d  =d  , d  =d  A 1 C 2 D D1 2

{B,C}, d  =d  , d  =dB C 21

{A,D}, d  =d  \/ d  =dD D1 2

A 1 B 2

D 1 D 2

Fig. 7. The QCA for the discriminator connector in Reo

QCAs and the QoS values for basic channels offered by different providers are given in
Figures 4 and 6, respectively. The resulting QCA after composition and hiding all of its
internal nodes appears in Figure 7, where its QoS properties are given in Figure 8 1.

The QoS value for the QCA in Figure 7 using the offerings of our two providers in
Figure 6 are, for provider1:

T1 = T2 = T3 = 1, T ′
1 = T ′

2 = T ′
3 = 2,

C1 = 8, C2 = 12, C3 = 16, C′
1 = 34, C′

2 = 33, C′
3 = 30,

P1 ≈ 0.69, P2 ≈ 0.48, P3 ≈ 0.5, P ′
1 ≈ 0.33, P ′

2 ≈ 0.39, P ′
3 ≈ 0.41

and for provider2:

T1 = T2 = T3 = 1, T ′
1 = T ′

2 = T ′
3 = 3.1,

C1 = 18, C2 = 26, C3 = 34, C′
1 = 62, C′

2 = 61.5, C′
3 = 56,

P1 = 0.99, P2 ≈ 0.98, P3 ≈ 0.97, P ′
1 ≈ 0.89, P ′

2 ≈ 0.89, P ′
3 ≈ 0.92

As in the previous example, we may have some QoS requirements for the connector
that may not be satisfied by either of the above alternatives, but it may be possible to
select appropriate basic channels from different providers separately and compose them
together to satisfy them, we skip the details here.

1 In fact the QCA given in Figure 7 is not exactly the QCA resulting from composition and
hiding. There are many more states and transitions in the resulting QCA, but most of the extra
transitions are τ -transitions. Therefore, we merge them with the visible transitions together as
weak atomic runs of Definition 4 and represent them simply as single transitions in Figure 7.
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T1 = max{t3, t5} T ′
1 = max{t2, t3, t3 + t4, t6} + max{t4, t1 + t4}

C1 = 3 × c3 + c5 C′
1 = 4 × c1 + c2 + 3 × c3 + 6 × c4 + 2 × c6

P1 = p3
3 × p5 P ′

1 = p4
1 × p2 × p3

3 × p6
4 × p2

6

T2 = max{t3, t5} T ′
2 = max{t2, t3, t3 + t4, t6} + max{t4, t1 + t4}

C2 = 4 × c3 + 2 × c5 C′
2 = 4 × c1 + c2 + 2 × c3 + 7 × c4 + c6

P2 = p4
3 × p2

5 P ′
2 = p4

1 × p2 × p2
3 × p7

4 × p6

T3 = max{t3, t5} T ′
3 = max{t2, t3 + t4} + max{t4, t1 + t4}

C3 = 5 × c3 + 3 × c5 C′
3 = 4 × c1 + c2 + c3 + 7 × c4

P3 = p5
3 × p3

5 P ′
3 = p4

1 × p2 × p3 × p7
4

Fig. 8. The QoS values for the discriminator

5 Simulation on QCA

Simulation relations were first introduced by Milner [18] for the purpose of comparing
programs, and widely used later to show abstraction and refinement between models
and specifications. They provide a sufficient condition for language inclusion that can
be established with low complexity, and their precongruence properties are suited for
compositional reasoning. In [6] simulation relations for ordinary constraint automata
were defined to verify if two automata are language equivalent or the language of one
is contained in the language of the other. In this section we propose to use quality
improving simulation as a way to guarantee not only the inclusion of languages induced
by Reo circuits, but also a higher (or at least equal) quality. For example, we may ask
a connector implementation to be always more reliable, or faster than what is required
by the specification, where both the specification and the implementation are given as
QCA.

Before the definition of simulation, we first define some notation. For a QCA Q =
(S, s0, N , R, −→), given a relation �⊆ S × S and a set of states P ⊆ S, P is called
�-upward closed iff for all states p ∈ P and p � p′, p′ ∈ P . For a relation � and two
�-upward closed sets P1 and P2, if there exist s1 ∈ P1 and s2 ∈ P2, such that s1 � s2,
then P1 ∪ P2 is also �-upward closed. Furthermore, let s ∈ S be a state in Q, N ⊆ N
and P ⊆ S, then

dc(s, N, P ) =
∨

{g : s
N,g,c
−−−→ s′ for some s′ ∈ P}

dcw(s, N, P ) =
∨

{g : s
N,g,c
−−−� s′ for some s′ ∈ P}

and

cost(s, N, g, s′) = {c : s
N,g,c
−−−→ s′ for some s′ ∈ P}

costw(s, N, g, s′) = {c : s
N,g,c
−−−� s′ for some s′ ∈ P}

Note that by introducing upward closed set, we can make an abstraction on QCA and
lead to a smaller state space. Here dc(s, N, P ) (dcw(s, N, P ) respectively) denotes the
weakest data constraint that ensures the existence of an N -transition (a weak atomic run
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with node set N respectively) from s to P . We now recall the definition of simulation for
ordinary constraint automata [6] and give the following definition for QCA. Simulation
of QCA considers only the functional aspects of connectors and ignores their quality
aspects.

Definition 5. Let Q = (S, s0, N , R, −→) be a QCA and � a reflexive binary relation
on S. � is called a simulation for Q if for all pairs (s1, s2) ∈�, all �-upward closed
sets P ⊆ S and every N ⊆ N :

dc(s1, N, P ) ≤ dc(s2, N, P )

A state s1 is simulated by another state s2 (or s2 simulates s1), denoted as s1 � s2,
iff there exists a simulation relation � with (s1, s2) ∈�. A QCA Q2 simulates another
QCA Q1 (denoted as Q1 � Q2) iff the initial state of Q1 is simulated by the initial
state of Q2

2.

The above notion of simulation is some kind of “strong relation” because it refers to
the stepwise behaviour, but does not accumulate the effect of non-observable behav-
iour alternatives. Thus, we define a notion of weak simulation for QCA analogously to
simulation over weak atomic runs as follows:

Definition 6. For a QCA Q = (S, s0, N , R, −→), and a reflexive binary relation �w

on S, �w is called a weak simulation if for all pairs (s1, s2) ∈�w, all �w-upward
closed sets P and every N ⊆ N ,

dcw(s1, N, P ) ≤ dcw(s2, N, P )

Next, we introduce our notion of quality improving simulation (QIS). We distinguish
two classes of QISes: QIS and Weak QIS. Quality improving simulations impose condi-
tions over the cost values corresponding to the quality of each transition separately. In
contrast, weak quality improving simulations constrain the cost values corresponding
to the weak atomic runs. The definitions are as follows:

Definition 7. Let Q = (S, s0, N , R, −→) be a QCA and �⊆ S ×S a reflexive binary
relation on the state space of Q. � is called a quality improving simulation relation iff
� is a simulation and for all pairs (s1, s2) ∈�,

∀c ∈ cost(s1, N, g, s′1).∃c′ ∈ cost(s2, N, g, s′2).s.t.s
′
1 � s′2 ∧ c ≤ c′

A state s1 is quality improving simulated by another state s2, denoted as s1 � s2,
iff there exists a quality improving simulation relation � with (s1, s2) ∈�. A QCA Q2
quality improving simulates another QCA Q1 (denoted as Q1 � Q2) iff the initial state
of Q1 is quality improving simulated by the initial state of Q2.

Example 4. Let’s go back to Example 2. For the two providers, we have two concrete
QCAs Q1 and Q2 respectively for the QCA given in Figure 5. In other words, the two

2 Here and in Definition 7 Q1 and Q2 should rely on the same set of names, and be combined
into a “large” QCA obtained through the disjoint union of the state spaces of Q1 and Q2.
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QCAs have same behavior but different QoS values. Suppose we only care about the
timing performance on the communication with this connector, then we can get the fol-
lowing table focusing on the time value costs. In this table each state is renamed like
sxi where i represents the corresponding QCA and sx represents the derived state name
in Figure 5.

Q1 Q2

dc(s01, {A, B, C}, {s(d)1, s(d)2}) = dc(s02, {A, B, C}, {s(d)1, s(d)2}) =
{dA = d ∧ dB = d} {dA = d ∧ dB = d}
cost(s01, {A, B, C}, cost(s02, {A, B, C},
dA = d ∧ dB = d, s(d)1) = {1} , dA = d ∧ dB = d, s(d)2) = {1}
dc(s(d)1, {C}, {s01, s02}) = {dC = d} dc(s(d)2, {C}, {s01, s02}) = {dC = d}
cost(s(d)1, {C}, dC = d, s01) = {0.5} cost(s(d)2, {C}, dC = d, s02) = {1}

By defining relation �= {(s01, s02), (s(d)1, s(d)2)}, we can find that it is a quality
improving simulation, since we have the condition

dc(s01, {A, B, C}, {s(d)1, s(d)2}) ≤ dc(s02, {A, B, C}, {s(d)1, s(d)2})

and
dc(s(d)1, {C}, {s01, s02}) ≤ dc(s(d)2, {C}, {s01, s02})

Furthermore, the condition in Definition 7 is also satisfied. Therefore, we can conclude
that Q1 � Q2.

Definition 8. Weak quality improving simulation is defined analogously to quality im-
proving simulation over weak atomic runs. For a QCA Q = (S, s0, N , R, −→), and a
reflexive binary relation �wq on S, �wq is called a weak quality improving simulation
iff �wq is a weak simulation and for all pairs (s1, s2) ∈�wq,

∀c ∈ costw(s1, N, g, s′1).∃c′ ∈ costw(s2, N, g, s′2).s.t.s
′
1 �wq s′2 ∧ c ≤ c′

The different types of simulation introduced in this section are ordered with respect to
how closely they distinguish behaviour alternatives of QCA.

Proposition 1. Simulation relations satisfy the following partial order:

Q1 � Q2 ⇒ Q1 � Q2

Q1 � Q2 ⇒ Q1 �wq Q2

Q1 �wq Q2 ⇒ Q1 �w Q2

Q1 � Q2 ⇒ Q1 �w Q2

In the context of Reo circuits, the connectors of practical interest are mostly composed
from a family of simpler connectors. A compositional approach to modelling and analy-
sis of such a connector is based on the description of the sub-connectors, without further
information about the composed connector. As usual, compositionality is captured by
the following definition:
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Definition 9. A relation � between automata is compositional iff

P1 � Q1 ∧ P2 � Q2 ⇒ P1 �� P2 � Q1 �� Q2

The following theorem provides a congruence result for the first three simulation pre-
orders with respect to the product operator. This result allows us to refine a QCA by
another one that may improve its quality without affecting its behaviour. However, the
compositionality does not hold for the weak quality improving simulation.

Theorem 1. Simulation, quality improving simulation and weak simulation are com-
positional with respect to the product operation.

Proof (sketched): We consider the relation R = {(〈s1, s2〉, 〈s′1, s′2〉) : s1 � s′1, s2 �
s′2} and show that it is a simulation (quality improving simulation and weak simulation
respectively). For simulation, we have

dc(〈s1, s2〉, N, P ) =
∨

(dcP1(s1, N1, P ) ∧ dcP2(s2, N2, P ))

and
dc(〈s′1, s′2〉, N, P ) =

∨
(dcQ1(s

′
1, N1, P ) ∧ dcQ2(s

′
2, N2, P ))

where N1 ∪ N2 = N . Since s1 � s′1, s2 � s′2, dcPi(si, Ni, P ) ≤ dcQi(s′i, Ni, P ),
thus dc(〈s1, s2〉, N, P ) ≤ dc(〈s′1, s′2〉, N, P ) is satisfied.

For QIS, we only need to prove that for all c ∈ cost(〈s1, s2〉, N, g, 〈ŝ1, ŝ2〉), there
exists c′ ∈ cost(〈s′1, s′2〉, N, g, 〈ŝ′1, ŝ′2〉), such that 〈ŝ1, ŝ2〉 � 〈ŝ′1, ŝ′2〉 and c ≤ c′. Since
c ∈ cost(〈s1, s2〉, N, g, 〈ŝ1, ŝ2〉), according to Definition 2, there exist c1, c2 such that

c = c1 � c2 and s1
N1,g1,c1
−−−→ P1 ŝ1 and s2

N2,g2,c2
−−−→ P2 ŝ2, where N1 ∪ N2 = N ,

g1 ∧ g2 = g. Because s1 � s′1, s2 � s′2, there always exist transitions s′1
N1,g1,c′

1−−−→ Q1 ŝ′1

and s′2
N2,g2,c′

2−−−→ Q2 ŝ′2, where c1 ≤ c′1 and c2 ≤ c′2. Due to the distributivity of � over
⊕ in Q-algebra, we have c ≤ c′1 � c′2 where c′1 � c′2 ∈ cost(〈s′1, s′2〉, N, g, 〈ŝ′1, ŝ′2〉).

The proof for weak simulation is similar like simulation. ��
To see that the compositionality does not hold for weak quality improving simulation,
consider the QCA given as follows where R = (N+ ∪ {∞}, max, +, +, ∞, 0):

– P1 = ({s0, s1, s2}, s0, N, R, −→), in which s0
τ,12

−−−→ s1 and s1
N,g,5
−−−→ s2,

– P2 = ({s′0, s
′
1, s

′
2}, s′0, N, R, −→), in which s′0

τ,2
−−−→ s′1 and s′1

N,g,9
−−−→ s′2,

– Q1 = ({t0, t1, t2}, t0, N, R, −→), in which t0
τ,10

−−−→ t1 and t1
N,g,7
−−−→ t2,

– Q2 = ({t′0, t
′
1, t

′
2}, t′0, N, R, −→), in which t′0

τ,2
−−−→ t′1 and t′1

N,g,9
−−−→ t′2.

According to Definition 2 and 8 we have both P1 �wq Q1 and P2 �wq Q2. However,

we have 〈s0, s
′
0〉

N,g,23
−−−� 〈s2, s

′
2〉 in P1 �� P2 and 〈t0, t′0〉

N,g,21
−−−� 〈t2, t′2〉 in Q1 �� Q2

respectively. Therefore, the weak quality improving simulation does not hold between
〈s0, s

′
0〉 and 〈t0, t′0〉.

On the other hand, the hiding operator preserves all kinds of simulation preorders.
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Theorem 2. If P � Q, where � is any kind of simulation relation, then for a given set
of nodes M , hide(P, M) � hide(Q, M).

Proof: To prove the result, it suffices to show that for a QCA Q = (S, s0, N , R, −→),
and M , any (weak / quality improving / weak quality improving) simulation relation
R for Q is a (weak / quality improving / weak quality improving) simulation relation
for hide(Q, M). We first consider the simulation case. Let � be the relation such that
s � s′ iff there exists a finite path

s
M,g1,c1−→ s1

M,g2,c2−→ s2 · · · M,gn,cn−→ s′

where all the gis are satisfiable. Then by considering the M -transitions in Q, we obtain

(s1, s2) ∈ R ∧ s1 � s′1 ⇒ s2 � s′2 for some state s′2 (1)

where (s′1, s′2) ∈ R. Let (s1, s2) ∈ R, N a nonempty subset of N \ M , and P an
R-upward closed subset of Q. Then for all states s of Q,

dchide(Q,M)(s, N, P ) =
∨

s′∈s∗

(dcQ(s′, N, P ) ∨ dcQ(s′, N ∪ M, P ))

where s∗ = {s′ ∈ S : s � s′}. From (1) we obtain that for every s′1 ∈ s∗1 there exists a
state s′2 ∈ s∗2 with (s1, s2) ∈ R. Because

dcQ(s′1, N, P ) ≤ dcQ(s′2, N, P )
dcQ(s′1, N ∪ M, P ) ≤ dcQ(s′2, N ∪ M, P )

we get dchide(Q,M)(s1, N, P ) ≤ dchide(Q,M)(s2, N, P ).
The proof for weak simulation is similar like simulation.
Now we consider the case for quality improving simulation. If (s1, s2) ∈ R, then

∀c ∈ cost(s1, N, g, s′1).∃c′ ∈ cost(s2, N, g, s′2).s.t.(s
′
1, s

′
2) ∈ R ∧ c ≤ c′

Whenever N \ M �= ∅, we can easily get

∀c∈costhide(Q,M)(s1, N \ M, ∃M [g], s′1).∃c′∈costhide(Q,M)(s2, N \M, ∃M [g], s′2).
s.t.(s′1, s

′
2) ∈ R ∧ c ≤ c′

Therefore, by considering the proof for simulation, we know that for any transition

s1
N̂,ĝ,c
−−−→ s′1 in hide(Q, M) with cost c and (s1, s2) ∈ R, there always exist a tran-

sition s2
N̂,ĝ,c′

−−−→ s′2 such that the condition for quality improving simulation is still
staisfied in hide(Q, M). So R is still a quality improving simulation in hide(Q, M).

For weak quality improving simulation, suppose (s1, s2) ∈ R, then we have

∀c ∈ costw(s1, N, g, s′1).∃c′ ∈ costw(s2, N, g, s′2).s.t.(s
′
1, s

′
2) ∈ R ∧ c ≤ c′

If N \ M = ∅, suppose s′1
N̂,ĝ,ĉ
−−−� s′′1 , and N̂ \ M �= ∅, then we have s′2

N̂,ĝ,ĉ′

−−−� s′′2
where (s′′1 , s′′2) ∈ R and ĉ ≤ ĉ′. Therefore, in hide(Q, M), there exist transitions
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s1
τ,c

−−−→ s′1 and s2
τ,c′

−−−→ s′2, and thus weak atomic runs s1
N̂,ĝ,c⊗ĉ
−−−� s′′1 and

s2
N̂,ĝ,c′⊗ĉ′

−−−� s′′2 . According to the definition of Q-algebra, ⊗ distributes over ⊕, i.e.,

a ⊗ (c ⊕ d) = (a ⊗ c) ⊕ (a ⊗ d)

So if c ≤ c′, ĉ ≤ ĉ′, then c ⊗ ĉ ≤ c′ ⊗ ĉ′. Therefore, the condition for weak quality
improving simulation is still staisfied in hide(Q, M). ��

6 Conclusion

In this paper we introduced QCA as an operational model for reasoning about com-
ponent connectors with QoS guarantees, together with notions of simulation that are
preserved by the QCA product. This result together with the relationship between weak
and strong version of (quality improving) simulations provide the basis for analysis of
both functional and non-functional aspects of Reo component connectors.

In our future activity, we will work on the development of appropriate logic and
quantitative model checking algorithms based on the QCA model, and investigate the
expressiveness of our model and its relationship with other extensions to constraint au-
tomata, such as in [3,5,7]. Reo and constraint automata have been successfully applied
in web service composition [17], but whether the QCA model can be taken as a new,
proper entry in the bazaar of web service composition with QoS constraints [16], is still
an open research question.
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the members of SEN3 for helpful discussions. We are also grateful to the referees for
their constructive criticism.
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Abstract. In the development of component-based systems, compo-
nents need to be adapted in most of the occasions to work under certain
conditions which were not initially predicted by their developers. These
conditions are likely to change at runtime, therefore it is very impor-
tant to provide systems with the ability to alter their behaviour while
they are running, depending on the changing conditions of the environ-
ment. This paper presents an expressive and graphically-based notation
to specify flexible adaptation policies (or mappings) between the inter-
faces of two or more components to be integrated. In a second step, we
propose an algorithm which automatically derives the resulting adaptor
from a mapping, and a description of component interfaces. We illustrate
our proposal using an E-book system.

1 Introduction

Building software systems as a combination of interacting software entities (com-
ponents, services, etc.) is gaining momentum in the software engineering commu-
nity, improving productivity as it enables the reuse of existing software entities.
These can be adapted in order to fit specific needs within different systems.
In such a way, application development is mainly concerned with the selection,
adaptation and composition of different pieces of software rather than with the
programming of applications from scratch. This approach to systems engineer-
ing, designated as Component-Based Software Engineering (CBSE) [24], pro-
motes the use of the so-called Commercial-Off-The-Shelf (COTS) components.
These are third-party, pre-existing software components which are selected and
assembled in order to build a working system. Due to the black-box nature of
these components, they must be equipped with external interfaces giving in-
formation about component functionality. However, since the interfaces of the
constituent components of a system do not always fit one another, they require
a certain degree of adaptation in order to avoid mismatching behaviours.

The need to automate these adaptation tasks has driven the development
of Software Adaptation [11]. This discipline covers all the topics related to the
management of communication between entities. It is characterised by highly
dynamic runtime procedures that occur as devices and applications move from
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network to network, modifying or extending their behaviour, and enhancing the
flexibility and maintainability of systems. Software Adaptation promotes the
use of software adaptors. These are software entities capable of enabling com-
ponents with mismatching behaviours to interoperate. They are automatically
built from an abstract description of how mismatch can be solved (i.e. adap-
tation mapping), which is based on the description of component interfaces.
Mismatch between components can be presented at four different levels. The
signature level deals with the static aspects of component interoperability. In-
terfaces at this level provide names, type of arguments and return values, as
well as exception types. This kind of adaptation implies solving syntactical dif-
ferences between signatures. The behavioural level specifies the order in which
the component messages are exchanged with its environment. The service level
groups other sources of mismatch, usually related to non-functional properties
like temporal requirements, security, etc. Finally, even if components present per-
fectly matching signatures, follow compatible protocols, and are also compatible
at the service level, we must ensure that they are going to behave as expected.
The semantic level is concerned about component functional specifications (i.e.
what they actually do).

Currently, industrial platforms only provide some means to describe compo-
nents at their signature level (e.g. CORBA’s Interface Definition Language).
However, most of the time mismatch occurs at the aforementioned behavioural
level, due to an incompatibility in the order of the exchanged messages between
components, which can lead to deadlock situations. Similarly to several recent
proposals in CBSE and Software Adaptation [1,2,3,4,7,17,26], we focus on the
behavioural interoperability level, extending interfaces with a description of their
protocol and dealing with the different compositional issues between them.

Furthermore, during the last few years we have been witnessing a boost in
the use of pervasive computing, where devices and applications dynamically find
and use services from their environment. The situation or characteristics of these
services are likely to change at runtime, thus an appropriate adaptation of the
components or services involved in the system does need to consider all these
variations which may affect their behaviour. In order to support this variability
in the process of adaptation, this work advocates for the flexible interaction
between an arbitrary number of components depending on the current state of
the execution of the system (i.e. current context).

However, the support of such flexible adaptation policies can lead to a re-
markable degree of complexity in the specification of adaptation, especially in
the case of many interacting components. To this purpose, we propose an ex-
pressive and user-friendly graphical notation which reduces the complexity of
specifying mappings. This is achieved through the incremental specification of
the mapping focusing on the different aspects involved. Finally, from such an
adaptation mapping, we propose an algorithm to automatically compute the
resulting adaptor.

This paper is organised as follows: Section 2 gives a formal model of compo-
nent interfaces, and presents an E-Book system that we use as running example
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throughout the paper. Section 3 introduces our mapping notation to define cor-
respondences among component messages taking contextual information into
account. In Section 4, we formalise the algorithm that generates in an automatic
way an adaptor protocol from a contextual mapping. Section 5 compares our pro-
posal with related works, namely context-aware computing, coordination, and
component adaptation. Finally, Section 6 draws up the main conclusions and
sketches some future works.

2 Component Model

This section presents a simple model to describe component interfaces, as well
as an E-Book system as case study.

2.1 Component Interfaces

Component interfaces are given using a signature and a behavioural interface.
A signature is a set of operation profiles. This set is a disjoint union of provided
operations and required operations [19]. An operation profile is the name of an
operation, together with its argument types, its return type and the exceptions
it raises. In addition, we take into account behavioural interfaces through the
use of process algebra notation. Many process algebras already exist and can be
used to this purpose, for instance CSP [14], the π-calculus [20], or LOTOS [16].
In this proposal, we have chosen CCS [18] because it is a simple, concise, and
provides the level of expressiveness we need to specify behavioural descriptions
of components. Messages involved in processes correspond to the operations used
in the signature. All the messages involved in this part of the component descrip-
tion constitute its alphabet. Since we focus on the behavioural interoperability
level, we keep only for the signature level the message names appearing in the
protocols, therefore we do not deal with operation arguments, return values or
exceptions.

Definition 1 (CCS). A process P in CCS is defined using the following oper-
ators, where P̂ is a process identifier, and ‘a’ is a message name:

P ::= 0 | α.P | P + P | P ‖ P | P̂
α ::= a? | a! | τ

The specific process 0 denotes termination. Each process can be prefixed by an
atomic action α, or composed with other processes using the parallel ‘‖’ operator
or the choice ‘+’ operator. Atomic actions are given by the internal (or silent)
action τ , or by input/output actions a?/a!. For any process identifier P̂ there
must be a single definition P̂ = P .

Automata-based languages such as UML state diagrams, Petri nets, or La-
belled Transition Systems (LTSs) can be used as an alternative notation to
process algebra to describe component interfaces. They are especially adequate
to favour user-friendliness, and to make the graphical specification of interfaces



308 J. Cubo et al.

possible. In the sequel, while presenting our context-based adaptation approach,
we use LTSs as behavioural interfaces to simplify the writing of the underly-
ing formal aspects. These LTSs can be automatically generated from algebraic
processes using the operational rules of the process algebra.

Definition 2 (LTS). A Labelled Transition System is a tuple (A,S , I ,F ,T )
where: A is an alphabet (set of events), S ⊆ Id is a set of states, I ∈ S is the
initial state, F ⊆ S are final states, and T ⊆ S ×A×S is the transition function.
Id stands for a set of identifiers.

Most of the time, components cannot be reused as they are because interactions
among them would lead to an erroneous execution, namely a mismatch. Formally,
cases of mismatch lead the whole system viewed as a (global) LTS into deadlock
states. For an LTS (A,S , I ,F ,T ), a deadlock state is a state s ∈ S which has
no outgoing transition (� ∃ (s , l , s ′) ∈ T ) and is not final (s �∈ F ). In practice,
mismatch situations may be caused by message names which do not correspond
(a regular use of components makes them interact on the same names of mes-
sages), the order of messages which is not respected, a message in one component
which has no counter part, or which matches with several messages (e.g., in case
of broadcast communication where one component is sending and several ones
receiving). We show on the example in Section 2.2 some concrete situations of
mismatch. In the remainder, adaptors generated by our approach aims at com-
pensating these cases of mismatch by making the whole system communicate
properly.

2.2 Running Example: An E-Book System

We introduce now a case study that we will use throughout the paper to illus-
trate our approach. It consists of an E-Book system, which is a Web service
providing access to a database of books. The E-Book system is constituted by
the BookServer (BS) and BookProvider (BP) components. Both of them can be
accessed by clients. Here, we focus on a single session which corresponds to the
connection and use by one client of the E-Book system. A comprehensive system
handling any number of sessions can be easily derived from our simplified version
of the E-Book system. A client can use the system to read a book online or to
download it. Component interfaces are described below in CCS. We also show
the corresponding LTS to favour the understanding. With initial and final states
respectively marked using bullet arrows and darkened states. We start with the
Client interface which is presented in Figure 1.

After a client has opened a session with the E-Book system, he/she may:
read a book online (read!), download a book copy on his/her computer (save!),
require the change of his/her access rights (switch!), receive a present (gift?) in
gratitude for his/her fidelity, such as an unreleased book not yet included in the
catalogue, and finally end the session (exit!).

Now, we present the behaviour specification of the E-Book system starting
with the BookServer component in Figure 2.
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Client = user !.passwd !.ConnectedClient

ConnectedClient = read !.ConnectedClient
+save!.ConnectedClient
+switch!.ConnectedClient
+gift?.ConnectedClient
+exit !.0

passwd!

user!

read!

exit!

save!
switch!

gift?

                                                                                 

Fig. 1. Client Behavioural Interface

BookServer = login?.ConnectedBS

ConnectedBS = subscribe?.SubscribeBS
+logout?.0

SubscribeBS = unsubscribe?.ConnectedBS
+offer !.OfferBS
+logout?.0

OfferBS = unsubscribe?.ConnectedBS
+stopoffer !.SubscribeBS
+logout?.0

                                                                                 

login?

logout?

offer!

subscribe?

stopoffer!

unsubscribe?

logout?

logout?
unsubscribe?

Fig. 2. BookServer Behavioural Interface

The BS component waits for an incoming connection (login?) which is nec-
essary to open a session. Then, it can receive a subscription request. Note that
a concrete implementation of the subscribe? message will distinguish between
the first time the client subscribes (payment of fees), and the following accesses
(identification as a Subscriber using a password). The subscription terminates
with the unsubscribe? action. BS can decide to give a gift to the client (of-
fer!), and to finish this special offer (stopoffer!). Finally, it may receive a logout?
message at any moment.

Last, we give the BookProvider component specification depicted in Figure 3.
The on? message opens a new session. During the session, the BP receives

requests to access a book (abstract?, full?), or to download it (download? ). When
the BP receives the offer? message, then it sends one or several presents (gift!)
to the client. When receiving the endoffer? message, then BP stops offering
presents, and goes back to the regular book access. The BP ends its session with
an off? message.

These three components cannot be directly used together, since mismatch
occurs at several levels: (i) message names, e.g. save! in Client versus download?
in BP, (ii) 3-party interactions to be explicited, e.g. exit!/logout?/off?, and (iii)
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BookProvider = on?.ConnectedBP

ConnectedBP = abstract?.ConnectedBP
+full?.ConnectedBP
+download?.ConnectedBP
+offer?.OfferBP
+off ?.0

OfferBP = gift !.OfferBP
+endoffer?.ConnectedBP
+off ?.0

on?

off?

offer?endoffer?

off?

abstract?

full?download?

                                                                                 

gift!

Fig. 3. BookProvider Behavioural Interface

correspondences between two messages and a single one, e.g. user!.passwd! in
Client with login? in BS and on? in BP.

Furthermore, apart from solving cases of mismatch, we want adaptation to
distinguish between the available user profiles when translating the messages
among components. Using a non-contextual approach, message correspondences
are fixed, which means that any client request is always associated to the same
target message. This prevents to take changes in these connections into account,
and motivates the need of new capabilities that our context-based adaptation
approach provides in order to achieve message translation depending on contexts.
Then, we distinguish two user profiles according to certain access rights. A client
session running on the E-Book system can switch between these two profiles:

- Guest. These users are only allowed to read the abstract of a book available
within the E-Book catalogue. A client session always starts with this profile.

- Subscriber. These users are those who have paid a subscription fee, and are
allowed to access books from the catalogue to read or download a copy of them
on their computer.

User profiles are not made explicit in the user interface because the client can
execute exactly the same requests independently of its profile.

3 Mapping Notation

Here we define a mapping notation based on vectors expressing correspondences
among component messages, and on transition systems to specify the evolution
of every component depending on its contexts. To make the mapping writing
easier, the graphical part of its specification focuses on one component after the
other.

3.1 Contextual Mapping

A first goal of the mapping is to define a mapping between events in the compo-
nent LTSs. These interactions are formalised through synchronisation vectors.
They allow messages with different names to synchronise, and even different
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numbers of messages to synchronise. These communications may be global to all
the involved components, or related to a specific context in which the compo-
nent is (for instance, Guest or Subscriber in the E-Book system). To take this
information into account, we will extend in a second step the mapping language
with an LTS-based notation to distinguish these cases.

A synchronisation vector denotes a communication between several compo-
nents. Each event appearing in one vector is executed by one component, and
the overall result corresponds to a synchronisation between all the involved com-
ponents. A vector may involve any number of components. In addition, a vector
does not require interactions on the same names of events as it is the case in
process algebra for instance.

Definition 3 (Synchronisation Vector). A synchronisation vector (or vector
for short) for a set of components Ci = (Ai ,Si , Ii ,Fi ,Ti), i ∈ {1, ..,n}, is a tuple
〈e1, . . . , en〉 with ei ∈ Ai ∪{ε}, ε meaning that a component does not participate
in a synchronisation.

To identify component messages in a vector, their names are prefixed by the
component identifier. Hence, in a vector, all the components which do not
participate in an interaction may be removed to simplify the notation, e.g.,
〈c1 :comm!, c2 :ε, c3 :comm?〉 will be written as 〈c1 :comm!, c3 :comm?〉.

A Contextual LTS (CLTS) is a part of the full mapping focusing only on
one component, and making explicit how this component may solve mismatch
occurring in its behavioural interface. A CLTS is an extended LTS where states
are not only identifiers, but also defines a set of vectors: we refer to them as
contextual states or contexts. Therefore, a CLTS defines the possible interactions
that can be run with the other components involved in the system in each of its
contextual states. According to its context, a message used in one component
may be associated to a different message in another component.

Definition 4 (Contextual LTS). A Contextual Labelled Transition System
(CLTS) is a tuple (Ac ,Sc, Ic ,Fc,Tc) specified over a set of vectors V where:
Ac is an alphabet (set of labels), Sc ⊆ Id × V is a set of contextual states (or
contexts for short), Ic ∈ Sc is the initial state, Fc ⊆ Sc are final states, and
Tc ⊆ Sc × Ac × Sc is the transition function.

Now, we define the full mapping, namely contextual mapping, for all the compo-
nents of the system. A contextual mapping is made up of several constituents.
First, a set of global vectors correspond to the interactions that do not depend on
any context in which the components are. Then, for each component, a CLTS
is given defining interactions that are dependent of the context in which the
component is. Vectors used in the contextual states are identified as contextual
vectors. Last, a set of trigger vectors express how the different CLTSs are con-
nected, and on which interactions the components switch from one context to
another.

Definition 5 (Contextual Mapping). A contextual mapping is defined as a
tuple (Vg ,Vc,CLTSi∈{1,...,n},Vt) built over components Ci = (Ai ,Si , Ii ,Fi ,Ti),
i ∈ {1, ..,n} where:



312 J. Cubo et al.

– Vg is a set of vectors global to all the components,
– Vc is a set of vectors used in contextual states,
– CLTSi∈{1,...,n} are contextual LTSs defined for every component Ci and built

over the set of contextual vectors Vc, and
– Vt is a set of trigger vectors corresponding to CLTS interactions.

Being given such an abstract mapping, we will propose in Section 4 an algorithm
that automatically computes a correct adaptor.

3.2 Contextual Mapping for the E-Book System

Now we focus on the E-Book system and illustrate how the contextual mapping
is written in practice. First of all, we present the different contexts involved in
the current system. They are deduced from the component specifications but
also from the kind of adaptation to be considered. Since we want to distinguish
user profiles within the client behaviour, we use a Guest and a Subscriber context
for it. The BS takes into account three contexts, Guest, Subscriber, and Offer in
which gifts are sent. Finally, the BP interface starts in a Running context, and
may evolve once in a while to the Offer context.

We define the contextual mapping corresponding to the E-Book system, by
specifying the following elements: global vectors (Vg), contextual vectors (Vc),
contextual LTSs (CLTSi∈{1,...,n}), and trigger vectors (Vt).

In the remainder, component messages in the signature mapping are prefixed
by the component identifier, namely c, s , and p respectively for the Client,
BookServer and BookProvider, to uniquely identify all the messages involved in
the system.

Global Vectors. These vectors do not belong to any context, and then are
global information, common to all the components. To express the correspon-
dences between two messages on one side (i.e. user!.passwd!) and one message
on the other (i.e. login?, on?), we use two tuples (vg1 and vg2 below) where
the first one is an independent evolution of the first component, and the second
one corresponds to the effective synchronisation. These vectors will be applied
successively due to the order of messages user! and passwd! in the client. Note
that vector vg2 is a 3-party communication which means that the three involved
components have to synchronise on the messages defined in this vector. This
corresponds to broadcast communication with one sender and two receivers.

vg1 = 〈c :user !〉
vg2 = 〈c :passwd !, s : login?, p :on?〉
vg3 = 〈c :exit !, s : logout?, p :off ?〉

Contextual Vectors. These vectors are used within contextual states, that are
the states appearing in the CLTSs we introduce in the next step.

vc1 = 〈c :read !, p :abstract?〉
vc2 = 〈c :read !, p : full?〉
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vc3 = 〈c :save!, p :abstract?〉
vc4 = 〈c :save!, p :download?〉
vc5 = 〈c :gift?, p :gift !〉

Contextual LTSs. A Contextual LTS (CLTSi∈{c,s,p}) is defined for every
component Ci∈{c,s,p}, and is built over the set of contextual vectors (Vc). Fig-
ure 4 shows CLTSc , CLTSs , and CLTSp respectively for Client, BookServer,
and BookProvider components. It is worth noticing that all the CLTSi states
are final (not depicted in the figure), because the vector vg3 is global and can be
applied at any moment.

The contextual vectors used in a specific CLTS correspond to the interactions
of the component at hand with the rest of the system depending on its contexts.
For instance, the client in its Guest context can synchronise with the BP with
respect to vectors vc1 and vc3 , as well as the component BP in its Running state,
but this latter can also interact on vectors vc2 and vc4 .

Trigger Vectors. They correspond to CLTS interactions, and make explicit on
which synchronisations components switch from one context to another.

vt1 = 〈c :switch!, s :subscribe?〉
vt2 = 〈c :switch!, s :unsubscribe?〉
vt3 = 〈c :switch!, s :unsubscribe?, p :endoffer?〉

CLTSs

Guest Subscriber

 

subscribe?

unsubscribe?

Offer

 

offer!

CLTSc

Guest

vc1, vc3

Subscriber

vc2, vc4, vc5

switch!

switch!

CLTSp

Running

vc1, vc2, vc3, vc4

Offer

vc5

offer?endoffer?

unsubscribe?

stopoffer!

Fig. 4. CLTSs for Client, BookServer, and BookProvider Components
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vt4 = 〈s :offer !, p :offer?〉
vt5 = 〈s :stopoffer !, p :endoffer?〉

The contextual mapping notation provides a compact representation of all
the information required for adaptation, and supplies a flexible mechanism for
it, specifying the conditions which will determine contextual changes. Therefore,
this new technique intends not only to perform flexible adaptation by altering the
behaviour of the system at runtime, but also to change message correspondences
as well depending on some changing conditions of the environment.

4 Context-Based Adaptation

In this section, being given a set of components, and a mapping description as
formalised respectively in Sections 2 and 3, we propose an algorithm to compute
an adaptor component. Note that from this mapping which is defined manually
by the designer, our approach generates automatically the resulting adaptor.
An adaptor is a third-party component that is in charge of coordinating all the
components involved in the system with respect to a set of interactions defined
in the mapping. Consequently, all the components communicate through the
adaptor as illustrated in Figure 5 where a component C1 wants to activate a
component C2. The mapping for this simple example is given by the vector 〈c1 :
on!, c2 :activate?〉. We emphasize that the adaptor interacts with the components
using the same name of messages but the reversed directions, e.g. communication
between on! in c1 and on? in the adaptor. Furthermore, the adaptor always
starts a set of interactions formalised in a vector by the receptions (on?), and
next handles the emissions (activate!).

                                                                                 

C1

Adaptor

C2

on!
on! on?

on?

activate!

activate?
activate! activate?

Fig. 5. A Simple Example of Adaptation

4.1 Contextual LTS Product

In Section 3, to make the writing of the mapping easier, we have specified one
CLTS for each component. Now, for adaptor generation purposes, we need a
single description of the mapping, then the first step is to compute a single
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CLTS from a set of CLTSs. Such a computation is achieved computing a product
between all the involved CLTSs which synchronise on events expressed in the
trigger vectors Vt specified in the mapping.

Definition 6 (CLTS Product). The CLTS product of n CLTSs defined as
tuples (Aci ,Sci , Ici ,Fci ,Tci ), i ∈ {1, ..,n}, with respect to a set of trigger vectors
Vt , is the CLTS (Ac ,Sc, Ic ,Fc,Tc) such that:

– Ac = Ac1 × . . . × Acn ,
– Sc = {((s1, . . . , sn),V1 
 . . . 
 Vn) | ∀ i ∈ {1, . . . ,n}, (si ,Vi) ∈ Sci },
– Ic = ((o1, . . . , on),V1 
 . . . 
 Vn) with ∀ i ∈ {1, . . . ,n}, Ici = (oi ,Vi),
– Fc = {((f1, . . . , fn),V1 
 . . . 
 Vn) | ∀ i ∈ {1, . . . ,n}, (fi ,Vi) ∈ Fci }, and
– Tc contains a transition (((s1, . . . , sn),V ), 〈a1, . . . , an〉 , ((s ′1, . . . , s

′
n),V ′)),

with V ′ = V ′
1 
 . . . 
 V ′

n , iff there is a state ((s1, . . . , sn),V ) in Sc, and
there is a vector 〈l1, . . . , ln〉 in Vt such that for every i in {1, . . . ,n} and
(si ,Vi) ∈ Sci :

• if li = ε then s ′i = si , V ′
i = Vi and ai = ε,

• otherwise there is a transition ((si ,Vi), ai , (s ′i ,V
′
i )) with ai = li in Tci .

The resulting CLTS automaton may be simplified keeping only states reachable
from its initial state. Function 
 computes the intersection of sets of vectors
discarding empty sets: 
Vi∈{1,...,n} = {V1 ∩ . . . ∩ Vk | ∀ j ∈ {1, . . . , k} Vj �= ∅}.

CTLS Product for the E-Book System. We will illustrate throughout sec-
tion 4 the different steps in the construction of the adaptor for the E-book system.
First, the CLTS product is computed using CLTSc, CLTSs , and CLTSp , and the
set of trigger vectors {vt1 , vt2 , vt3 , vt4 , vt5} defined in Section 3.2. The resulting
global CLTS is presented in Figure 6 with three different contextual states, and

                                                                                 

(Guest, Guest, Running)

vc1, vc3

(Subscriber, Subscriber, Running)

vc2, vc4

vt1

vt3

(Subscriber, Offer, Offer)

vc5

vt2

vt4

vt5

Fig. 6. CLTS Product for the E-Book System

five transitions labelled with trigger vectors. All the states in the resulting CLTS
are final. We recall that vectors in the resulting product contextual states are
computed using an intersection on the non-empty contextual states of compo-
nent CLTSs. Identifiers of the product contextual states are built as a tuple
gathering the identifiers of the constituent contextual states.



316 J. Cubo et al.

4.2 Contextual Product

After the CLTS product, the next step, namely contextual product, aims at
generating from a global CLTS obtained using Definition 6 and a set of global
vectors defined in the mapping, a single mapping expression representing all the
possible interactions between the different components. Intuitively, the contex-
tual product flattens the contextual states of the global CLTS applying either
contextual vectors or global vectors. The result of this product is an LTS with
vectors on transitions that correspond to a high-level description of the adaptor.
Section 4.3 will refine this LTS generating interactions (with the components)
from vectors appearing on transitions to finally obtain the final adaptor.

Definition 7 (Contextual Product). The contextual product of n LTS Ci =
(Ai ,Si , Ii ,Fi ,Ti), i ∈ {1, ..,n}, with a CLTS (AM ,SM , IM ,FM ,TM ) and a set
of global vectors Vg , is the LTS (A,S , I ,F ,T ) such that:

– A = AM × A1 × . . . × An ,
– S = SM × S1 × . . . × Sn ,
– I = (IM , I1, . . . , In),
– F = FM × F1 × . . . × Fn , and
– (i) a transition (((sm ,Vm), s1, . . . , sn), 〈am , a1, . . . , an〉 , ((s ′m ,V ′

m), s ′1, . . . ,
s ′n)) is in T iff there is a state ((sm ,Vm), s1, . . . , sn) in S , and there is a
transition ((sm ,Vm), 〈l1, . . . , ln〉 , (s ′m ,V ′

m)) in TM , or
(ii) a transition (((sm ,Vm), s1, . . . , sn), 〈am , a1, . . . , an〉 , ((sm ,Vm), s ′1, . . . ,
s ′n)) is in T iff there is a state ((sm ,Vm), s1, . . . , sn) in S , and 〈l1, . . . , ln〉 ∈
Vm or 〈l1, . . . , ln〉 ∈ Vg , and in both cases (i) and (ii), for every i in
{1, . . . ,n}:

• if li = ε then s ′i = si and ai = ε,
• otherwise there is a transition (si , ai , s ′i) with ai = li in Ti .

Similarly to Definition 6, the resulting LTS may be simplified keeping only reach-
able states. Moreover, elements of the CLTS used for convenience purposes to
build the contextual product above have to be discarded after its computation.
This is simply achieved removing all the first elements appearing in first places
of states and transitions.

Contextual Product for the E-Book System. The next step is to compute
the contextual product using the global CLTS in Figure 6, and the component
behavioural interfaces. Figure 7 shows the LTS resulting of this product where
contextual states are replaced by several transitions. Transitions hold vectors
which correspond to all the possible interactions of the entities involved in the
system at hand with respect to the given contextual mapping.

4.3 Adaptor Generation

We present in this section an algorithm which computes the adaptor from the
component interfaces and a contextual mapping. The essential part of the algo-
rithm is Step 1 where first the product of all CLTS appearing in the contextual
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Fig. 7. Contextual Product for the E-Book System

mapping is computed (function compute CLTS product, Def. 6), and then the
contextual product uses this global CLTS, components Ci and global vectors Vg

to generate a contextual product (function compute contextual product, Def. 7).
The rest of the algorithm corresponds to common processings to obtain the re-
sulting adaptor [12]. The main idea is to derive labels from vectors appearing in
the LTS computed in Step 1 so as to make communications with the involved
components possible.

Removing deadlocks is important to suppress spurious interactions that will
not leave the system in a stable (final) state. As an example, consider two com-
ponents, a controller C and a device D . Suppose that the controller can turn on
and off the device, and that it can be warned whether the device is removed or
added back. Suppose also that the device can be turned on and off, and also be
unplugged, which stops its execution. The process algebraic interfaces of these
simple components are as follows:

C = on!.off !.C + removed?.added?.C
D = on?.off ?.D + unplugged !.0

A possible adaptation mapping could be: 〈c : on!, d : on?〉, 〈c : off !, d : off ?〉,
and 〈c : removed?, d : unplugged !〉. Yet, a synchronisation on 〈c : removed?, d :
unplugged !〉 could make the controller C engage in the second branch of its
behaviour, and then it would wait indefinitely for an added event. This would
produce a deadlock state in the corresponding adaptor that has to be removed.

Function remove deadlocks in Step 2 of the algorithm is achieved recursively
removing transitions and states yielding deadlocks: find a deadlock state s , re-
move s and any transition t with target s , and do this until there is no more such
s in the LTS. For all vector transition, we apply reversal of direction messages
and computation of all possible interleavings (function compute permutations)
starting by the receptions. Message directions are reversed (Steps 6-7) because
all messages will go through the adaptor, and this latter has to synchronise
with these messages using completementary directions (!/? or ?/!). Interleav-
ing of messages (Steps 8-13) is important when vectors involve more than two
messages in a communication (e.g., in case of broadcast communication), then
interleavings make the system non-deterministic on the order in which messages
occur, and the adaptor accepts any possible combination.
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Algorithm 1. adaptor generation
constructs an adaptor for a set of components being given a contextual mapping
inputs components C1, . . . ,Cn with each Ci = (Ai ,Si , Ii ,Fi ,Ti), and a contextual
mapping CM = (Vg ,Vc ,CLTSi ,Vt )
output adaptor CA = (A,S , I ,F ,T )

1: P := compute contextual product(Ci , compute CLTS product(CLTSi ,Vt ),Vg)
2: Prestr := remove deadlocks(P)
3: Sadd := ∅

4: TA := ∅

5: for all t = (s = (s1, . . . , sn ), (l1, . . . , ln), s ′ = (s ′
1, . . . , s ′

n)) in TPrestr do
6: Lrec = {l? | l ! ∈ (l1, . . . , ln)}
7: Lem = {l ! | l? ∈ (l1, . . . , ln)}
8: Seqrec = compute permutations(Lrec)
9: Seqem = compute permutations(Lem)

10: for all (R = (r1, . . . , ri),E = (e1, . . . , ep)) ∈ Seqrec × Seqem do
11: TA := TA ∪ {s r1→ q1, . . . , qi−1

ri→ qi , . . . , qi+1
e1→ qi+2, . . . , qn−1

ep→ s ′}
12: Sadd := Sadd ∪ qk∈1..n−1

13: end for
14: end for
15: return CA = (APrestr ,SPrestr ∪ Sadd, IPrestr , FPrestr ,TA)

The complexity of our algorithm lies mainly in the CLTS and contextual
product construction, that is O(| S |n) where S is the largest set of states and
n the number of involved entities.

Proof (sketch). We prove that the resulting adaptor makes all the component
LTSs terminate in one of their final states. First, by definition of the contextual
product, the resulting automaton contains all the interactions possible among the
components as formalised in the different sets of vectors given in the contextual
mapping. Next, the removal of deadlocks suppresses all the deadlocks leading
to non-final states, hence all the correct termination states are preserved. Last,
directions of messages are reversed that means that all the component messages
involved in correct synchronisations (labels of the product automaton) will have
a matching event in the resulting adaptor. In addition, computation of permu-
tations implies an application order (first receptions, then emissions) with all
possible interleavings within these two steps. Hence, reversal of directions and
permutations preserve all the simple transitions appearing in the product, hence
they also preserve all the correct final states existing after the removal of dead-
locks. �

Our algorithm does not take reordering of messages into account, which may be
needed in some adaptation scenarios. Reordering of events is needed to ensure
a correct interaction when two communicating entities have messages which are
not ordered as required. However, in our proposal, such a reordering of messages
can be specified making it explicit in the writing of the adaptation mapping. Let
us illustrate these ideas on a simple example depicted in Figure 8. We consider
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two components, C1 and C2, exchanging login and request information, with
messages that have to be reordered to make the communication possible:

C1 = log!.req!.0
C2 = query?.id?.0

An algorithm that might work the reordering out would accept a mapping
defined by the two vectors 〈c1 : log!, c2 : id?〉, and 〈c1 : req!, c2 : query?〉 (this is
the case in algorithms presented in [12] for instance). Our approach can reorder
messages using the following vectors 〈c1 : log!, c2 : ε〉 equivalent to 〈c1 : log!〉,
〈c1 : req!, c2 : query?〉, and 〈c1 : ε, c2 : id?〉 equivalent to 〈c2 : id?〉, in which
we specify that the interaction on log is desynchronised, temporarily memorised
until its use for effective interaction on id. Both approaches (reordering messages
at the level of the algorithm or at the level of the adaptation mapping) lead to
the same adaptor that we show in Figure 8.
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log!
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query!

req! id?

log? query?

log?
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Fig. 8. An Adaptation Example with Reordering

Building the Adaptor for the E-Book System. Finally, vectors appearing
in the LTS of Figure 7 are decomposed in basic interactions. Thus, Figure 9
presents the protocol of the adaptor which is a solution to the different mis-
matching situations originally present in the system, and also takes user profiles
into account.

The top part of Figure 9 corresponds to the login stage and to the Guest
execution of the E-Book system. In the middle, the left-hand side describes the
logout information, whereas the right-hand side presents the switch from Guest
to Subscriber in both directions. The bottom part of the figure presents the Offer
behaviour on the left, and the Subscriber one of the E-Book system on the right.

To make interactions possible between components and the adaptor, the di-
rection of messages is reversed. As an example, from the vg1 vector, the single
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reception c:user? is derived. Moreover, interleavings may be introduced to con-
sider all the possible orderings of messages in case a vector in Figure 7 was made
up of more than two messages. This is the case for instance, for the 3-party
communication expressed in vg2 , resulting in Figure 9 in the reception c:passwd?
followed by an interleaving of s:login! and p:on!.

                                                                                 

c:user? c:passwd?

s:login!

p:on!

p:on!

s:login!

s:logout!

p:off!

c:read? p:abstract!

c:save?

c:switch?
s:unsubscribe!c:exit?

c:exit?

c:exit?

c:gift!

p:gift?

p:endoffer!

p:offer! s:offer?

s:stopoffer?

c:switch?
s:subscribe!

c:read?

p:full!

c:save?

p:download!

p:off!

s:logout!

p:abstract!

Fig. 9. Adaptor for the E-Book System

5 Related Work

Context-aware computing [22] is a mobile computing paradigm in which appli-
cations can discover and take advantage of contextual information (such as user
location, time, nearby people and devices, etc.). Many researchers have studied
this topic and built context-aware applications to demonstrate the usefulness
of this technology [5,6]. Although there have been relevant achievements in the
architectural support of context-aware applications [13,21], this paradigm does
not explicitly deal with the adaptation of software entities within the system.

On one hand, the approach of Software Adaptation is reusing components
and tackling the interoperability issues which exist at the different levels of com-
ponent interaction. On the other hand, context-aware computing is concerned
about the design and implementation of applications which are able to modify
their functionality depending on context information which has been specified
during the design of the system.

As regards coordination, adaptors generated by our approach are abstract de-
scriptions of coordinator or orchestrator modelling complex interaction scenarios
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between the components involved in the system at hand. In [25], Wermelinger
and Fiadeiro define component connections through morphisms between the ac-
tions involved in components. Nevertheless, these morphisms only tackle mis-
match at the signature level, whereas the tuples handled in our mapping nota-
tion can work behavioural mismatch out. Braione and Picco [8] have proposed
a calculus to specify contextual reactive systems separating the description of
behaviours and the definition of contexts in which some actions are enabled or
inhibited. Our goal here is slightly different, since we are taking contextual infor-
mation into account while integrating components with mismatching interfaces.

Schmidt and Reussner present in [23] an adaptation approach as a solu-
tion to particular synchronisation problems between concurrent components,
when for instance one component interacts with two other components. This
approach is based on algorithms close to basic synchronous products. Inverardi
and Tivoli [15] tackle the automatic synthesis of connectors in COM/DCOM
environments, by guaranteeing deadlock-free interactions among components.
They may also define properties that the resulting system should verify using
liveness and safety properties expressed as specific processes. Compared to these
proposals, we may match different name messages using our correspondences.
In addition, our approach does not only restrict the adaptor to possible non-
deadlocking behaviours [15] but may also address behavioural adaptation. That
comes from the rich notation we have proposed that allows to deal with possibly
complex adaptation scenarios, whereas these approaches do not use any mapping
language for adaptor specification.

In [12], the authors propose a solution to behavioural adaptations using regu-
lar expressions of vectors as a mapping notation. Their work is supported by al-
gorithms based on synchronous products and Petri nets encodings. Our mapping
notation is as expressive as regular expressions of vectors since we use synchroni-
sation vectors but also transition systems that can express the sequence, choice
and iteration operators of regular expressions. Moreover, we propose a divide-
and-conquer approach to tackle the complexity of the mapping, which makes
its writing easier. This purpose is also achieved thanks to the automaton-based
notation we have advocated.

Finally, in a previous work [9], we proposed a first solution to contextual
adaptation that we have extended here in several directions: (i) an approach to
deal with more than two components, (ii) a mapping notation based on syn-
chronisation vectors and transition systems which is more expressive than the
original one, and allows the separate description of the mapping on its con-
stituent components, and (iii) an algorithm to construct adaptors between an
arbitrary number of components.

6 Concluding Remarks

In this work we have presented an expressive and graphically-based notation
to specify flexible adaptation policies between the interfaces of two or more
components to be integrated. The separate specification of the mapping for each
of the different interacting components simplifies the adaptation process. Then,
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we have proposed an algorithm which automatically derives the resulting adaptor
from a mapping and a description of component behavioural interfaces. Our
proposal has been illustrated using an E-Book system.

We plan to extend our context-based adaptation approach to open systems.
Currently, our approach generates a global adaptor for all the components in-
volved in the system, therefore all the messages go through the adaptor, and the
whole system is closed from an external point of view. Our goal is to modify
our approach to leave some ports opened to the environment. Through these,
new components which can be added and removed dynamically, will be able to
interact with the current system. This is particularly convenient when some sys-
tems cannot be shut down, such as banking or airport traffic control systems,
but need to be dynamically reconfigured. In such a situation, we should enhance
our approach to take into account the addition of new contexts or the removal
of outdated ones, and also to adjust the current adaptor.

Another perspective is to connect our approach for software adaptation with
programming platforms such as the BPEL orchestration language [3] or the
.NET 3.0 framework. As an example, the recent .NET 3.0 platform relies on the
implementation of components or business processes based on workflows (Win-
dows Workflow Foundation [10]) which can be used as behavioural interfaces.
Our proposal could be applied to this framework in order to support the de-
sign and development of .NET 3.0 software entities, such as the E-Book Web
service we presented in this paper, and to generate code from obtained adaptor
protocols in case of mismatch to be solved.
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Cámara, Javier 305
Canal, Carlos 305
Charfi, Anis 211
Chothia, Tom 286
Cubo, Javier 305

De Meuter, Wolfgang 231, 268
Dedecker, Jessie 231

Field, John 76
Frey, Davide 37

Gill, Christopher 249
Godskesen, Jens Chr. 132
Gregory, Steve 56

Hackmann, Gregory 249
Haitjema, Mart 249
Haller, Philipp 171
Herzeel, Charlotte 268
Hickey, Jason 151

Jacquet, Jean-Marie 113
Jaffar, Joxan 191
Jmaiel, Mohamed 211

Kallel, Slim 211
Krummenacher, Reto 1

Linden, Isabelle 113

Marinescu, Maria-Cristina 76
Meng, Sun 286
Mezini, Mira 211
Moon, Young-Joo 286
Mostinckx, Stijn 268

Nixon, Lyndon 1

Odersky, Martin 171

Paschali, Martha 56
Philips, Eline 268
Pimentel, Ernesto 305

Roman, Gruia-Catalin 37, 249

Salaün, Gwen 305
Scholliers, Christophe 268
Sen, Rohan 249
Simperl, Elena 1
Stefansen, Christian 76
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